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Abstract 

 

 

CHARACTERIZATION OF THE DISCRIMINATIVE STIMULUS EFFECTS OF NITROUS 

OXIDE 

 

By Kellianne Jean Muse Richardson, Ph.D. 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2014. 

 

Major Director: Keith L. Shelton, Ph.D., Assistant Professor, Department of Pharmacology & 

Toxicology 

 

Nitrous oxide (N2O) is a widely used anesthetic adjunct in dentistry and medicine that is also 

commonly abused.  N2O alters the function of several receptors in vitro and ex vivo, however, the 

receptors systems underlying its abuse-related intoxicating effects are poorly understood.  The 

goals of this dissertation were to (1) establish N2O as a discriminative stimulus, (2) characterize 

the temporal properties of the discriminative stimulus, (3) determine the degree of similarity 

between N2O and other inhalants and (4) explore the neurochemical effects responsible for the 

stimulus properties of N2O.  Twenty-four mice were trained to discriminate 10 minutes exposure 

to 60% N2O+40% O2 from 100% O2 in daily 5 minute food-reinforced operant sessions.  Mice 

acquired the discrimination in a mean of 38 sessions.  N2O produced concentration-dependent 

full substitution for itself.  Full substitution required 7 minutes of N2O exposure but the offset of 

stimulus effects following cessation of N2O exposure were more rapid.  Varying degrees of 

partial substitution for N2O were engendered by abused vapors and vapor anesthetics.  The 

aromatic hydrocarbon toluene produced the most robust substitution for N2O.  One or more 

toluene concentrations produced full substitution for N2O in 7 of 8 subjects, suggesting that these 

two abused inhalants share common neurochemical mechanisms.  The NMDA receptor open 
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channel blockers (+)-MK-801, ketamine and memantine produced dose-dependent partial 

substitution for N2O.  A competitive NMDA antagonist and NMDA glycine site antagonist did 

not substitute for N2O.  Pretreatment with (+)-MK-801 as well as ethanol produced dose-

dependent leftward shifts in the N2O concentration effect curve further suggesting some overlap 

in their mechanisms of action.  GABAA agonists and positive allosteric modulators, opioid 

agonists, serotonergic agonists, nicotine, a nNOS inhibitor and the psychomotor stimulant 

amphetamine all failed to appreciably substitute for N2O and/or failed to alter the N2O 

concentration effect curve when administered prior to N2O exposure.  No drug tested produced 

greater than 80% mean N2O-lever selection leaving open the possibility of other neurochemical 

contributors to the stimulus effects of N2O. 
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Introduction 

 

Epidemiology of inhalant abuse 

 

Inhalants are a large class of volatile and gaseous chemicals such as toluene, 1,1,1-

trichloroethane and nitrous oxide (N2O) that are grouped only by their route of administration.  

Most inhalants are components of common household products such as computer dusters, 

correction fluid, gasoline and lacquer thinner.  Worldwide inhalant abuse is a serious social and 

medical issue (Substance Abuse, 2010, Garriott & Petty, 1980, Kumar et al., 2008, Li et al., 

2011, Padilla et al., 1979, Potocka-Banas et al., 2011, Smart, 1988, Szapocznik et al., 1977, 

Vaille, 1988).  Demographics that are particularly at risk for abuse of inhalants include 

adolescents, medical staff, recreational drug users as well as those living below the poverty line 

in the USA and abroad. 

It is believed that inhalants are a drug of choice for adolescents because they are 

commonly found around the home, legal, inexpensive and easily concealable (World Health 

Organization, 1999).  Prevalence of inhalant abuse amongst adolescents rises and falls cyclically 

in the Unites States.  For example, from 1967 through 1970 roughly 13% of incarcerated 

adolescents in New York state admitted inhalant abuse, whereas in 1977 the percentage was 

considerably lower (Hein, Cohen, & Litt, 1979).  The percentage of twelfth grade students using 

inhalants rose steadily from 4% in 1981 to 7% by 1987 (Johnston et al., 2012).  Since the 

introduction of 8th and 10th grade students to the Monitoring the Future Survey in 1991, inhalant 

abuse has been consistently estimated as more prevalent amongst 8th and 10th grade students than 

12th grade students every year through 2013 (Johnston et al., 2014).  The number per 1,000 
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person years metric used to estimate prevalence of inhalant abuse in 1991 is difficult to convert 

into an exact percentage of the population but estimates of youth 12 to 17 years old whom 

initiated inhalant usage almost doubled from 10.7 in 1991 to 21.8 in 1995 (Substance Abuse, 

1997).   

In both 2006 and 2009 the rate of inhalant abuse amongst high school students in the 

United States was ranked third after alcohol and marijuana and continuously more prevalent than 

cocaine or heroin abuse (Johnston et al., 2007, 2009).  In the most recent dataset, inhalants 

continues to rank second to marijuana as most used illicit drug in 8th, 10th and 12th grade youths 

(Johnston et al., 2012).  Interestingly as was the case with several other drugs, within all three 

grade levels inhalant abuse has slowly declined in the last decade from its peak in 2005 to the 

present.  In 2005 the estimated percentage of past year users in 8th 10th and 12th grade were 10%, 

6% and 5%, respectively; the most recent data from 2013 estimated the percentage of past year 

users in 8th 10th and 12th grade were 5%, 4% and 3%, respectively (Johnston et al., 2014).   

Several factors increase the likelihood that an adolescent will abuse volatile 

substances.  A study conducted in 12 to 18 year old school children in Bogotá, Colombia showed 

that the strongest factors in past year abusers were having friends who misused volatile 

substances and having experienced being drunk (Lopez-Quintero & Neumark, 2011).  Being 

male, 14–16 years old, having poor academic achievement record and being from a neither 

wealthy nor poor family were also positively correlated with volatile solvent misuse.  Having 

friends that misused volatile substances and low perception of the dangers of inhalants were most 

strongly associated with non-users with who were self-admittedly “likely” or “very likely” to 

misuse volatile substances in the next year.  Public school attendance, lack of exposure to drug 

use prevention programs and poor academic achievement in the last year were also positively 



www.manaraa.com

3 

 

correlated in these non-using students with a self-identified risk of abusing volatile substances in 

the next year (Lopez-Quintero & Neumark, 2011). 

As is the case with other drugs of abuse there is also a correlation between inhalant 

abuse and mental illness.  For instance, the likelihood of an adult using an illicit drug more than 

doubles from 11.6% to 26.5% if they are mentally ill (Substance Abuse, 2010b).  Likewise the 

instance of inhalant use in youths aged 12-17 more than doubles from 3.4% to 8.0% if they were 

diagnosed as having a major depressive episode in the last year (Substance Abuse, 2010b).   

While inhalants in aggregate are a serious public health concern, the number of 

scientific studies devoted to individual inhalants varies widely.  One inhalant which is widely 

available and frequently abused, yet has received relatively little attention, is N2O.  Very few 

studies have quantified the subcategory of adolescents abusing N2O within the larger context of 

adolescents abusing inhalants (Garland, Howard, & Perron, 2009) however in 2005 Monitoring 

the Future estimated that 21% of 12 to 17 year old adolescents initiated inhalant abuse with N2O 

(Substance Abuse, 2006).  Further the National Survey on Drug Use and Health (NSDUH) 

estimates 21.3% of adolescents that initiated inhalant abuse began with N2O (Office of Applied 

Studies, 2009).  

Nitrous oxide gas is commonly used in dentistry and medicine as an analgesic and 

anxiolytic.  Nitrous oxide is available to the general public through diversion of the gas from a 

variety of sources.  These include medical N2O cylinders, cylinders used as an oxidizing agent 

for both vehicle performance enhancement and hobby rocketry and most frequently whipped 

cream dispenser charging cylinders.  Nitrous oxide abusers are a unique subset of the inhalant 

abusing population compared to those who abuse volatile solvents.  Unlike most inhalants which 

are primarily abused by younger adolescents, N2O is most commonly abused by older 
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adolescents aged 16-17 (Substance Abuse, 2008).  From 2002 to 2006 the NSDUH estimated 

N2O was the drug choice for 4.7% of past-year inhalant initiates age 12 but was the drug choice 

for 59.3% of past-year inhalant initiates age 17. 

In addition to a high prevalence of use in adolescents, health care professional such as 

dentists, anesthesiologists and nurse anesthetists also have an elevated risk of N2O abuse 

compared to the general public (Bell et al., 1999, Seidberg & Sullivan, 2004).  Given the easy 

access to medical-grade N2O the drug choice in these demographics is unsurprising.  It has been 

hypothesized that dentists may initiate misuse of N2O as self-medication for stress relief which 

progresses to more frequent abuse (Seidberg & Sullivan, 2004).  When randomly selected 

members of the American Association of Nurse Anesthetists across the United States were 

polled to determine the prevalence of drug abuse, N2O was ranked second only to 

benzodiazepines as a preferred drug for misuse by certified nurse anesthetists  (Bell, 

McDonough, Ellison, & Fitzhugh, 1999).  For the subset of admitted poly-drug abusers, daily 

use of N2O accounted for 252 separate instances of abuse per month as compared with only 152 

instances of benzodiazepine misuse. 
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Medical consequences of N2O abuse 

 

The intentional misuse of inhalants can lead to medical complications such as 

encephalopathy (Ross, 1982), dissolution of myelin sheath surrounding neurons (Filley, 

Halliday, & Kleinschmidt-DeMasters, 2004), kidney stones, leukemia, cardiac arrhythmias 

(Garriott & Petty, 1980) and damage to the tissues of the lungs and liver (Devathasan et al., 

1984).  The specific dangers of N2O abuse include B-12 deficiency myelopathy (Hathout & El-

Saden, 2011), necrosis of tissue from frostbite (Hwang, Himel, & Edlich, 1996) and 

cardiorespiratory failure (Potocka-Banas et al., 2011).  In rare instances death attributed to 

sudden sniffing syndrome has been reported (DiMaio & Garriott, 1978, Fagan & Forrest, 1977).  

In fact poison control reports indicate N2O ranks 4th out of 25 categories in percentage fatality 

which estimates the number of cases resulting in death per 1000 poison control calls (Marsolek, 

White, & Litovitz, 2010). 

The mechanism behind a number of N2O-induced pathologies are fairly well 

understood.  Nitrous oxide use interrupts vitamin B-12 metabolism (Alt et al., 2011, Chiang et 

al., 2013, Diamond et al., 2004, Hathout & El-Saden, 2011, Sethi et al., 2006).  Vitamin B-12 is 

a cofactor necessary for red blood cell formation and maintenance of the nervous system.  

Nitrous oxide irreversibly oxidizes cobalt in Vitamin B-12 from Co1+ to Co2+.  The oxidized 

cobalt is needed for methylmalonyl CoA but the reduced form of cobalt is needed for methionine 

synthase.  Decreased methionine synthase activity impairs ongoing regeneration of 

tetrahydrofolate which in turn delays DNA synthesis.  Impaired methionine synthase activity 

also increases homocystine levels.  This indirect effect on methionine synthase underlies the 

dermal and hematological consequences of N2O abuse.  Megaloblastic anemia secondary to 
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repeated N2O abuse has also been reported, probably as a result of a delay in DNA synthesis 

leading to impaired nuclear maturation (Barbosa et al., 2000, Trivette et al., 2013).  Furthermore, 

individuals with megaloblastic anemia can develop hyperpigmentation of the skin secondary to 

vitamin B-12 deficiency but repeated N2O abuse alone can lead to hyperpigmentation in a 

relatively short period of time (Chiang et al., 2013, Gilliam & Cox, 1973). 

Repeated abuse of N2O also has deleterious effects on the brain and spinal cord (Alt et 

al., 2011, Diamond et al., 2004, Hathout & El-Saden, 2011, Tatum et al., 2010).  The etiology of 

myelopathies secondary to N2O abuse also relates to dysfunction of vitamin B-12 related 

enzymes and possibly B-12’s role in regulating growth factors and cytokines [for review see 

(Hathout & El-Saden, 2011)].  However, even N2O abusers with normal serum vitamin B-12 

levels have presented at the clinic with pathologies such as a Guillain-Barre-like syndrome 

(Tatum et al., 2010).  Guillain-Barre syndrome occurs when the immune system attacks the 

peripheral nervous system leading to nerve inflammation, demyelination that slows nerve 

signaling and eventual paralysis.  Early symptoms of Guillain-Barre syndrome are numbness 

beginning in the extremities, poor balance, muscle weakness and pain.  Nitrous oxide effects at 

Methylmalonyl CoA (an intermediate in the Krebs cycle) may impede energy metabolism to 

cause some of these symptoms (Maze & Fujinaga, 2000). 

The cardiac effects of N2O are less clear.  Death by cardiorespiratory failure after 

hypoxia from N2O abuse (Potocka-Banas et al., 2011) and unexplained death after N2O exposure 

(Mody, 1975) have been reported.  Nitrous oxide does not alter heart rate or blood pressure 

(Zacny et al., 1994) or lead to heart attack (Sanders et al., 2012).  However, several case studies 

show N2O administration during surgery disrupts normal sinus rhythm (Roizen, Plummer, & 

Lichtor, 1987).  Deviations from normal sinus rhythm were speculated to be due to direct effects 
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of N2O on either the sinoatrial (SA) node, intra-arterial conduction or the atrioventricular (AV) 

node or possibly other increases in vagal stimulation and (less likely) decreases in sympathetic 

tone.  An increased percentage of patients given N2O in addition to epinephrine under anesthesia 

show an irregular echocardiogram (Lampe et al., 1990).  Specifically, AV wave dissociation or 

progressive delay of the P wave into the QRS complex occurred in 61% patients given N2O but 

41% of patients not administered N2O (Lampe et al., 1990).  The mechanism of this complication 

is also unknown. 
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Current status of inhalant abuse research in the United States 

 

Case studies reported by individual groups and geographical/socioeconomic patterns of 

abusers underscore the prevalence of inhalant abuse in the United States.  Abuse rates in excess 

of those reported for many other classes of abuse drugs are well-documented by the combined 

efforts of several U.S. government offices including the Office of Applied Studies (OAS), 

Substance Abuse and Mental Health Services Administration (SAMHSA) and U.S. Department 

of Health and Human Services (HHS).  Additionally, the University of Michigan Institute for 

Social Research receives funding to publish an annual Monitoring the Future report on emerging 

patterns of drug abuse amongst adolescent populations examining the prevalence of inhalant 

abuse amongst adolescents.  However, primary research investigating the mechanisms of action 

of inhalants and the long term effects of inhalant use are underfunded. A search of the publically 

available Research Portfolio Online Reporting Tools (RePORT) reveals roughly $2.9 million of 

NIDA funding will directly benefit the study of inhalants including $999,807 to aid prevention 

studies, $569,766 towards ongoing epidemiological studies and $1,372,542 for primary research.  

This is approximately 0.35% of NIDA’s 2013 fiscal year research budget which is staggeringly 

low when compared to the problem.  In order to grasp the full impact of inhalant abuse on 

society and understand their abuse-related effects, more tangible support in the form of increased 

targeted research funding to encourage additional investigations in the area is desperately 

needed.  The studies described here are designed to address that need as it relates to nitrous 

oxide.  Understanding the abuse-related stimulus properties of nitrous oxide is critical.  It will 

provide a much needed basic understanding of the behaviorally relevant pharmacological effects 
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of nitrous oxide.  This knowledge is a prerequisite for developing effective treatment strategies 

to curb nitrous oxide abuse.  
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Physiochemical properties and pharmacokinetics of N2O 

 

N2O in nature 

Nitrous oxide is a small, inorganic, linear molecule with a molar mass of 44 grams per 

mole.  Nitrous oxide is colorless and has been described as either entirely odorless or slightly 

sweet smelling (Erowid entry ‘Nitrous oxide’, 2014).  Nitrous oxide synthesis can occur 

naturally as a byproduct of nitrifying and denitrifying reactions in earthworms, archaea and some 

anoxic bacteria.  Commercially produced N2O has many applications: it is an oxidant used in 

internal combustion engines and hobbyist/professional rocketry; it is used in food products as an 

aerosol propellant; it is a reliable low cost analgesic and anesthetic in medical and dental 

practices.  Some of the physical properties of N2O lend it to being classification as a greenhouse 

gas.  In some circumstances reactions downstream of N2O and oxygen lead to production of 

atmospheric nitric oxide, a free radical reported to deplete the ozone layer.  In the body, N2O 

crosses the blood brain barrier and interacts with one or more neuroreceptor systems to exert its 

psychoactive properties. 

 

N2O absorption, distribution, metabolism and elimination 

The only route of entry of N2O into the body is via inhalation (Cowley & Lambertsen, 

1979).  The gas rapidly enters the bloodstream through alveolar absorption.  Nitrous oxide 

circulates freely in the blood without requiring a carrier molecule.  Due to its low blood gas 

partition coefficient, once in the bloodstream it distributes between the blood and organ tissues 

(Becker & Rosenberg, 2008).  As a result of its amphipathic properties it can rapidly cross lipid 

bilayers such as the blood brain barrier.  There is no evidence of N2O conversion to nitrogen 
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after entering the brain and nitrogen perfusion has not elicited a recorded receptor response 

(Yamakura & Harris, 2000) therefore it is believed N2O itself is active in the CNS and exerts its 

effects via interactions with one or more neurotransmitter receptor systems.  Excretion occurs 

almost exclusively via the lungs (Sawyer, Eger, & Bahlman, 1977) with over 99% cleared by 

exhalation and 0.004% metabolized by flora native to the intestines (Hong, Trudell, O’Neil, & 

Cohen, 1980). 
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Receptor systems implicated in the biological effects of N2O 

 

NMDA receptors 

The excitatory amino acid glutamate has three ionotropic receptors in the CNS; α-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate and N-methyl-D-aspartate 

(NMDA).  The NMDA subtype of glutamate receptors is named due to its responsiveness to 

exogenous administration of the agonist NMDA.  NMDA receptors are heterotetrameric ligand-

gated ion channels.  There are three known NMDA receptor subunits: NR1 and NR3 which binds 

glycine and NR2 which binds L-glutamate.  NMDA receptor heterotetramers require the 

presence of one NR1 subunit (Pérez-Otaño et al., 2001).  Activation of the NMDA receptor 

requires coincidence of presynaptic glutamate release and postsynaptic depolarization which 

results in the removal of a voltage-dependent Mg2+ blockade from the channel.  The binding of 

both L-glutamate and the co-agonist glycine confers maximum activation. 

NMDA receptors can be antagonized by drugs acting at several distinct sites.  

Antagonists can act through the native glutamate binding site, the native glycine binding site, the 

polyamine binding site or through blockade of the receptor ion channel.  Kashiwagi et al. 

demonstrated that the interactions with channel blockers are determined by amino acid residues 

constituting M2 pore-forming regions and M1, M3 and M4 channel spanning regions of both 

NR1 and NR2 subunits (Kashiwagi et al., 2002).  Point mutations of some residues effects IC50 

values of the open channel blocker MK-801 but not memantine in the NR1 and NR2A variants 

(Kashiwagi et al., 2002) suggesting amino acid residues within the channel have differential 

effects on channel blockade depending on the structure of the antagonist.  A number of in vitro 

findings indicate that N2O acts as a NMDA antagonist.  Nitrous oxides antagonizes NMDA 



www.manaraa.com

14 

 

receptor function in a reversible, non-competitive and modestly voltage dependent manner 

(Jevtović-Todovorić et al., 1998, Mennerick et al., 1998).  The nature of the interaction between 

N2O and NMDA receptors has been primarily characterized using patch clamp techniques on 

cells native to brain regions densely populated with NMDA receptors (Balon et al., 2003, 

Jevtović-Todovorić et al., 1998, Mennerick et al., 1998, Ranft et al., 2007) as well as in 

heterologous expression systems (Ogata et al., 2006, Petrenko et al., 2010, Sato et al., 2005). 

Studies in amygdalar slice preparations suggest both a pre- and post-synaptic component 

to N2O’s actions on NMDA receptor-mediated excitatory postsynaptic currents (NMDAR-

EPSCs) (Ranft et al., 2007).  NMDA receptor-mediated EPSCs are decreased by application of 

N2O, an effect which is consistent with a post-synaptic action.  Application of the channel 

blocker (+)-MK-801 (dizocilpine) decreased the amplitude of the NMDAR-EPSCs.  Co-

application of N2O prolonged the magnitude of the blockade produced by MK-801 which the 

authors speculated was due to a decrease in the probability of glutamate release (Ranft et al., 

2007); this effect is consistent with a pre-synaptic action.  When NMDA is applied to rat 

hippocampal cultured neurons inward current increases.  The addition of N2O produces a 

rightward and downward shift in the dose-response curve (Jevtović-Todovorić et al., 1998).  

Furthermore, whole cell recording of rat hippocampal neurons showed inhibition by N2O when 

co-applied with NMDA (Mennerick et al., 1998). 

Studies of monosynaptic communication by NMDA receptors allow the investigation of 

receptor function without confounding polysynaptic network interference (Mennerick et al., 

1998).  Excitatory synaptic transmission in microcultures of rat hippocampal cultures show that 

NMDA receptor-mediated excitatory autaptic currents are attenuated by 49 ± 6% when 80% N2O 

is bubbled into the extracellular solution.  Based on NMDA current change, the N2O blockade of 
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NMDA receptors is believed to be less voltage dependent than ketamine or Mg2+ (Mayer, 

Westbrook, & Guthrie, 1984) but easily reversible. 

There are numerous variations in assembled NMDA receptors in vivo.  Agonist and 

antagonist binding affinities may vary according to subunit composition.  Xenopus oocytes 

expressing human NR1A and NR2A NMDA receptor subunits show inhibition by 31±2% when 

0.58 atm N2O is bubbled into the extracellular solution (Yamakura and Harris, 2000).  There are 

4 established types of NR2 subunits.  NR2 subunits modify, among other properties, channel 

conductance and current kinetics (Sobolevsky, 2007).  Heterologous expression systems could 

potentially examine which subunit composition or NR2 subtypes are more sensitive to N2O but 

these studies have yet to be conducted. 

NMDA heterotetramers may assemble with a NR3 subunit.  Though less studied than 

NR1-NR2 variants, NR1-NR3 subunit are activated by glycine alone (Cavara, Orth, & 

Hollmann, 2009).  There are indications that functional and physiologically relevant NMDA 

receptors require NR3 coassembly with NR1/NR2 subunits.  NR3A mRNA expression is low in 

adult rodent brain and NR3B expression remains constant in the adult brainstem and spinal cord 

motor neurons during development (Yamakura et al., 2005).  Coexpression of NR3 subunits 

decreased calcium permeability (Matsuda et al., 2003) but not the extent of magnesium blockade 

(Yamakura et al., 2005).  However, there is little evidence that NR3 subunits are involved in the 

physiological effects of N2O given data demonstrating that NMDA receptor inhibition by 0.6 atm 

N2O was similar in NR1/NR2B comprised receptors and NR1/NR2B/NR3B comprised receptors 

(Yamakura et al., 2005). 

Only two in vivo studies have directly examined interactions between N2O and NMDA 

receptors.  Like the volatile anesthetic halothane (Crowder, Shebester, & Schedl, 1996), N2O 
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effects coordinated movement in C. elegans worms (Nagele, Metz, & Crowder, 2004).  Quality 

but not quantity of locomotion is altered by N2O exposure in wild-type C. elegans.  Specifically, 

reversal of their direction and time spent moving backwards are half that of air-exposed worms.  

However, C. elegans with a loss-of-function mutation in NMR-1, which encoded a NMDA-type 

glutamate receptor, are unaffected by 70% N2O.  C. elegans with transformation rescue in nmr-1 

gene mutation had restored sensitivity to 70% N2O such that quality of locomotion was again 

altered in a manner similar to that in wild-type worms.  To confirm that these findings were due 

to NMDA-like receptors, a non-NMDA mechanism was investigated by examining a loss of 

function mutation in a gene most closely associated with the AMPA subtype of glutamate 

receptors.  These glr-1 mutants were as sensitive as wild-type worms to N2O mediated decreases 

in reversals showing that N2O antagonizes NMDA receptors and not AMPA receptors to impair 

locomotion in C. elegans.  In the second in vivo demonstration of N2O’s effects at NMDA 

receptors, rats were implanted with electrodes and voltammetric measurements were monitored 

using a polarograph.  NMDA receptors located on dopaminergic substantia nigra pars compacta 

cells were sensitive to N2O exposure (Balon et al., 2003).  Specifically, administration of 500 pM 

NMDA to the substantia nigra pars compacta increased dopamine release in the striatum of 

freely moving rats.  Nitrous oxide exposure reduced the percentage striatal dopamine release 

elicited by 500 pM NMDA (Balon et al., 2003).  Taken together these studies strongly suggest 

that N2O antagonizes NMDA receptor function. 

GABAA receptors 

Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the 

mammalian CNS (Chebib & Johnston, 1999, Jacob, Moss, & Jurd, 2008, Kumar & Kuppast, 

2012).  There are three subclasses of GABA receptors: GABAA, the closely related GABAC, as 



www.manaraa.com

17 

 

well as G-protein coupled GABAB receptors.  Upon activation, GABAA receptors act to 

hyperpolarize neurons and inhibit neuronal firing by gating chloride ion influx.  Of the three 

subclasses, only the GABAA subtype of receptors are currently implicated in the actions of N2O.   

Nitrous oxide does not potentiate GABAA receptor current in the absence of an agonist 

suggesting it is a positive modulator (Hapfelmeier et al., 2000).  Distinct positive modulatory 

sites have been identified which bind benzodiazepines, barbiturates and GABA-positive 

neurosteroids.  Investigations of N2O’s ability to increase GABAergic current have been 

conducted in mammalian cells with subunit combinations found to have widespread distribution 

in the rodent brain (Pirker et al., 2000).  In Xenopus oocytes expressing 122S GABAA 

recombinant receptors, N2O exposure potentiates GABAergic current resulting from application 

of 10 μM GABA by a modest 20% (Yamakura & Harris, 2000).  In another patch clamp study, 

N2O (100% or 29.2 mM) increased chloride ion current flow through 122L recombinant 

mammalian GABAA receptors by 69% and decreased rise in current time by 45% (Hapfelmeier 

et al., 2000).  The same 100% N2O concentration in 12 recombinant mammalian GABAA 

receptors increased peak current by 88%  and decreased rise time by 30% (Hapfelmeier et al., 

2000).  Application of 29.2 mM N2O increased current in whole cell patches by 154%  over that 

of 5 μM GABA alone in 122L recombinant receptors in human embryonic kidney cells 

(Hapfelmeier et al., 2001).  Nitrous oxide also potentiated responses to the exogenously applied 

direct GABAA agonist muscimol in ex vivo cultured hippocampal neurons (Dzoljic & Van Duijn, 

1998).  Specifically, 80% N2O enhanced GABA induced chloride ion movement by 20% 

(Dzoljic & Van Duijn, 1998).  These in vitro and ex vivo data showing an interaction of N2O 

with the GABAA receptor suggest that potentiation of GABAA receptor function may also 

underlie the behavioral effects of N2O. 
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Additional indirect evidence of an interaction of N2O with GABAA receptors comes 

from data examining the interaction of N2O and ethanol.  A number of the behavioral effects of 

ethanol are believed to be GABAA-receptor mediated.  The behavioral effects of N2O have some 

overlap with those of ethanol.  For instance, both ethanol and N2O are anxiolytics (Lapin, 1993) 

and the discriminative stimulus effects of ethanol are partially mediated through GABAA 

positive modulatory effects (Shannon et al., 2004, Shelton & Balster, 1994, Shelton & Grant, 

2002).  Nitrous oxide reduced 10% ethanol consumption in alcohol preferring and heavy 

drinking strains of rats (Kosobud, Kebabian, & Rebec, 2006).  Nitrous oxide is chosen more 

frequently by moderate alcohol drinkers than light drinkers (Zacny, Walker, & Derus, 2008) 

however alcohol drinking prior to N2O choice does not appear to augment the subjective effects 

of N2O (Walker & Zacny, 2001).   

The possibility that the behavioral effects of N2O are at least in part due to interactions 

with the GABAA receptor is also suggested by studies examining the anxiolytic properties of 

N2O.  It is well accepted that benzodiazepines produce anxiolysis through positive modulatory 

effects at GABAA receptors.  It was demonstrated that the benzodiazepine site antagonist 

flumazenil reversed 30% N2O and 40% N2O-mediated reductions in anxiogenic phenotypes in 

the conditioned defensive burying assay (Czech & Quock, 1993).  In this study subjects that 

received 2mA shock conditioning followed by N2O exposure showed reductions in both duration 

of burying and bedding height (Czech & Quock, 1993).  Flumazenil also dose dependently 

attenuated the anxiolytic effect of 50% N2O in the hole-board assay (Czech & Green, 1992).  

Furthermore, the GABAA competitive antagonist SR-95531 (Gabazine) significantly attenuated 

N2O mediated increases in time spent in the light compartment as well as number of transitions 

in the light/dark box assay (Li & Quock, 2001). Finally, a double-blind randomized study 
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quantified human subjective effects during exposure to 30% N2O and after pretreatment with 

flumazenil. Visual analogue scale ratings of subjective “high” produced by N2O were 

significantly reduced by flumazenil pretreatment.  Ratings of “drunk”, “elated” and “drug liking” 

were also diminished, though not significantly (Zacny et al., 1995).  In summary N2O potentiates 

GABAA receptor function.  It is therefore possible that the GABAA positive modulatory effects 

of N2O may also be responsible for the subjective intoxication produced by N2O. 

 

Opioid receptors 

There are three subtypes of opioid receptors: mu (Lord, Waterfield, Hughes, & Kosterlitz, 

1977), delta (Wolozin & Pasternak, 1981) and kappa (Martin, Eades, Thompson, Huppler, & 

Gilbert, 1976) [For review see (Pasternak, 2005, Pasternak & Pan, 2013)].  Both mu and kappa 

opioid receptors have been implicated in the analgesic and antinociceptive properties of N2O.  

For example, exposure to 75% N2O reduced the number of writhes subsequent to intraperitoneal 

injection of 0.7% glacial acetic acid.  The kappa opioid antagonist nor-binaltorphimine (nor-

BNI) but not the delta opioid antagonist naltrindole suppressed N2O analgesia (Koyama & 

Fukuda, 2010).  β-Chlornaltrexamine, a mixed agonist/antagonist at mu opioid receptors, 

reversed antinociceptive responses to 70% N2O in subjects that received 0.6% glacial acetic acid 

(Emmanouil et al., 2008).   

However, evidence also exists which argue against an interaction of N2O with mu opioid 

receptors.  Specifically, the subjective effects of 30% N2O are not attenuated by naloxone (Zacny 

et al., 1999, Zacny et al., 1994) nor did naloxone antagonize N2O-induced deficits in the digit 

substitution test and pain perception (Zacny et al., 1999).  While 30% N2O is a relevant clinical 

concentration in dentistry it is relatively low, suggesting that the effects of N2O on opioid 
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receptors may require exposure to higher concentrations.  Unfortunately, these studies were 

unable to test concentrations above 30% as they are reported as being aversive in some patients 

(Block et al., 1988, Dohrn et al., 1992, Walker & Zacny, 2003).   

The reports of N2O’s aversive effects may be due to an interaction with kappa opioid 

receptors.  Since emotional states cannot be attributed to animals, avoidance and aversion 

phenotypes are used as models of dysphoric effects in humans. Activity at the dynorphin/kappa 

opioid receptor system has been shown to produce aversive effects in animals.  For example, the 

kappa agonist U50-488 dose dependently increased the development of odorant paired swim 

stress aversion in mice (Land et al., 2008).  In a second conditioned aversion paradigm, 

conditioned aversion to a footshock-paired compartment was prevented by pretreatment with the 

kappa opioid antagonist norBNI and could not be elicited in prodynorphin knockout mice (Land 

et al., 2008).  Lastly, there is also direct evidence of overlapping stimulus properties of N2O and 

kappa opioid agonists in drug discrimination.  Specifically, N2O substituted in animals trained to 

discriminate the kappa opioid agonist ethylketocyclazocine but not in mice trained to 

discriminate the mu opioid agonist morphine (Hynes & Hymson, 1984).  Considering the 

pharmacologically specificity of drug discrimination it is plausible that kappa opioid agonism 

may partially mediate the subjective effects of N2O. 

 

Other potential targets  

There are a scattering of additional in vitro and ex vivo studies in the literature suggesting 

that nitrous oxide interacts with a number of other receptor systems.  However, these reports 

have generally not be systematically replicated nor expanded upon in follow-up experiments.  

Individual studies have shown that nicotinic acetylcholine receptors (Suzuki, Ueta, Sugimoto, 
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Uchida, & Mashimo, 2003, Yamakura & Harris, 2000), serotonin receptors (Suzuki et al., 2002,  

Yamakura & Harris, 2000), glycine receptors (Yamakura & Harris, 2000), Dopamine D-2 

receptors (Koyanagi et al., 2008) as well as GIRK (Yamakura, Lewohl, & Harris, 2001) and 

TREK-1 (Gruss et al., 2004) potassium channels may all be modulated by N2O.  There is also 

evidence that N2O interacts with neuronal nitric oxide synthase (nNOS), a family of enzymes 

regulating nitric oxide (NO) production [review see (Emmanouil & Quock, 2007)].  While nNOS 

expression is relevant to anxiety-related biological activity (Chakraborti, Gulati, & Ray, 2008) 

there is little evidence to suggest these interactions primarily mediate the activity of other known 

drugs of abuse (Green, Gatto, & Grant, 1997) or will apply to the discriminative stimulus 

properties of N2O. 
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Drug discrimination: A model of the subjective intoxicating effects of drugs in humans 

 

Adaptation for studying drugs of abuse 

The subjective intoxication produced by a drug can only be verbally reported by 

humans.  Subjective effects of drugs vary by individual (Preston & Bigelow, 1991) but are made 

more easily quantifiable with standardized questionnaires like the Addiction Research Center 

Inventory (ARCI), Profile of Moods States (POMS), drug class questionnaires and adjective 

rating scales (Karch, 2006).  The drug discrimination procedure is an extremely powerful 

research tool which models human subjective intoxicating effects of drugs in humans or animals.  

Humans, non-human primates, guinea pigs, gerbils, pigeons, and rodents have all served as 

subjects in drug discrimination studies (Colpaert, 1999).   

When an animal serves as a subject discrimination training typically occurs using an 

operant procedure.  The subject is trained to perform one behavior following drug administration 

in order to receive reinforcement whereas they must perform an alternative behavior following 

vehicle administration to receive reinforcement.  Either positive or negative reinforcement is 

effective in training drugs as discriminative stimuli (Järbe & Ohlin, 1979, Järbe & Rollenhagen, 

1978).  Once subjects reliably perform the discrimination behavior, the degree to which other 

drugs elicit discriminative stimulus effects similar to the training drug can be examined.  The 

discriminative stimulus effects of the training drug are the result of the interoceptive cue of that 

drug.  This interoceptive cue results from the neurochemical effects produced by the training 

drug.  Pharmacological properties of drugs with CNS activity such as the site of action, receptor 

specificity, receptor subtype, site selective binding and efficacy can all be explored using drug 

discrimination (Colpaert, 1999). 
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The specific parameters of drug discrimination training and testing vary according to 

the variables of importance and the species used in the study.  For instance in early studies, 

guinea pigs were trained to run into one arm in a T-maze to receive a reinforcer following 

pentobarbital injection and run into the opposite arm to receive a reinforcer following saline 

injection (Overton, 1964).  Similar T-maze procedures have been conducted with other training 

drugs including nicotine (Schechter & Rosecrans, 1972a).  Pigeons have also been used as 

subjects.  In one early study pigeons were trained to peck one key following Δ-9-THC and 

another key following saline (Henriksson, Johansson, & Järbe, 1975). 

During the 1960s through the 1980s a limited number of studies examined the drug 

discrimination task in humans (Chait, Uhlenhuth, & Johanson, 1984, Wolbach, Isbell, & Miner, 

1962).  Laboratories that conducted the procedure in human subjects allowed for comparison of 

animal discrimination data with human discrimination data (Schechter & Rosecrans, 1972b, 

Wolbach, Miner, & Isbell, 1962) as well as human discrimination data with human subjective 

effects measures (Chait et al., 1988, Lee et al., 1989, Preston et al., 1989, Shannon & Holtzman, 

1977, Young et al., 1984).  A few studies even specifically compared and contrasted data 

generated in humans with data generated in nonhuman subjects from the same drugs (Chait, 

Uhlenhuth, & Johanson, 1988, Lee, Stafford, & Hoebel, 1989).  Overall these studies clearly 

demonstrated that there is an excellent correlation between human subjective and discriminative 

stimulus effects and the discriminative stimulus effects of drugs in non-human subjects. 

Although early procedures used tasks such as the T-maze, the research community 

rapidly adopted the use of operant conditioning chambers for conducting drug discrimination 

studies in non-human primates, rodents and pigeons.  The most common variant is the two-lever 

discrimination procedure.  In a typical two lever operant procedure subjects learn that responding 
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on one lever is reinforced following administration of a training drug whereas responding on the 

alternative lever is only reinforced following administration of vehicle.  The lever resulting in 

reinforcement is predictable only by attending to the interoceptive cue of the drug or lack 

thereof.  Initially responding approximates chance levels but improves with repeated daily 

training sessions.  Eventually the majority of responding within a training session will occur on 

the injection-appropriate lever.  After acquiring the behavior to pre-defined criteria, subjects that 

maintain satisfactory levels of discriminatory control move to a training/testing session 

alternation across days.  Schedules of reinforcement may or may not be the same during a test as 

during training.  For instance, testing may be conducted under conditions in which responding on 

either lever is reinforced (Shannon & Holtzman, 1977) or the test sessions may be conducted 

under extinction (Holtzman, 1988, Järbe & Ohlin, 1979, Leberer & Fowler, 1977, Stolerman & 

Olufsen, 2001).  There is some indication that conducting testing during extinction may generate 

more graded dose-effect curves but in practice both methods yield information about subjective 

similarity of the test drug injection compared to that of the training drug. 

In addition to data on the subjective similarity of a test drug injection to that of the 

training drug, the drug discrimination procedure also provides information on the temporal rate 

of operant lever-pressing behavior.  Response rate can be sensitive to administration of drug 

(Harris & Balster, 1968, Heffner, Drawbaugh, & Zigmond, 1974).  Disruption of operant 

performance can be due to either excessive stimulation resulting in the emergence of competing 

behaviors such as stereotypy or due to CNS depression (Solinas, Panlilio, Justinova, Yasar, & 

Goldberg, 2006).   

Generally in drug discrimination assays several doses of the training drug or a probe 

drug are used to generate a generalization curve.   Very low doses of the training drug elicit 
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responding on the vehicle appropriate lever.  Increasing doses of the training drug result in 

increases in group mean drug-lever selection.  Generally, the training dose and doses higher than 

the training dose elicit responding only on the training drug-appropriate lever.   

The most powerful feature of the drug discrimination procedure is the cross-

substitution or generalization test.  The neurochemistry underlying the interoceptive cue of the 

training drug dictates the behavior of a subject during a substitution test (Schechter & Rosecrans, 

1972a).  Novel test compounds may engender either vehicle or drug-lever responding.  Test 

compounds that elicit responding on the training drug-appropriate lever often share similar 

neurochemical effects with the training drug.  Test compounds that engender only vehicle-

appropriate responding either do not cross the blood brain barrier or, more likely do not act 

through the same neurochemical mechanism as the training drug (Colpaert, 1999). 

  

 

Properties of discriminative stimuli 

The discriminative stimulus properties of drugs have been shown in a number of 

experiments to be CNS mediated.  For example, it was demonstrated that the discriminative 

stimulus of nicotine could be antagonized by the CNS-penetrant nicotinic antagonist 

mecamylamine but not by the nicotinic antagonist hexamethonium, which does not cross the 

blood brain barrier (Rosecrans & Chance, 1977).  The discriminative stimulus effects of drugs 

are also receptor specific.  To illustrate, in an early study it was shown that physostigmine, a 

reversible acetylcholinesterase inhibitor would not substitute in animals trained to discriminate 

pentobarbital, a GABAergic positive modulator, from saline (Overton, 1966).  Generally a test 

drug will only substitute for a training drug if they bind the same receptor.  For example, 
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Lysergic acid diethylamide (LSD) is a hallucinogen which interacts with many serotonergic 

receptor subtypes, chiefly, 5HT1A and 5HT2A (Burris, Breeding, & Sanders-Bush, 1991, Burris 

& Sanders-Bush, 1992, Glennon, Rosecrans, & Young, 1983, Watts et al., 1995, Winter, 2009).  

Psilocybin and mescaline are both hallucinogens that act as partial agonists for several 

serotonergic receptors (Geyer & Vollenweider, 2008).  Psilocybin and mescaline but not the 

monoamine releaser D-amphetamine produced a LSD-like cue in rats trained to discriminate 

LSD from saline (Schechter & Rosecrans, 1972b).  The substitution of psilocybin and mescaline 

are attributed to the pharmacological effects they share with LSD.  Their similarity is also 

corroborated by the fact that psilocybin and mescaline also produce cross-tolerance with LSD 

(Wolbach, Isbell, et al., 1962).   

In some cases drug discrimination has selectivity such that it can distinguish between 

drugs acting upon different sites on the same receptor complex.  For instance, NMDA receptors 

have several binding sites through which compounds can decrease receptor function (Nankai, 

1998, Scatton, 1993).  NMDA antagonists may competitively bind glutamate or glycine binding 

sites as well as uncompetitively block the channel or modulate polyamine sites (Gibson et al., 

2002).  NMDA antagonists produce psychomimetic effects in humans depending on how the 

compound binds the receptor.  For instance, polyamines like spermine have biological activity 

(Igarashi & Kashiwagi, 2010, Pegg, 2009) such as interacting with RNA and DNA, roles in cell 

proliferation and differentiation and inhibition of neuronal nitric oxide synthase (nNOS) but may 

also have behavioral effects such as antagonism of NMDA receptors (Carter et al., 1988, Patat et 

al., 1994).  However, the polyamines spermine, spermidine and arcaine were not similar to the 

high affinity open-channel NMDA antagonist phencyclidine (Nicholson & Balster, 1998).  

Similarly, eliprodil, another drug that non-competitively binds a polyamine site the NMDA 
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receptor did not substitute in subjects trained to discriminate PCP from saline (Balster, 

Nicholson, & Sanger, 1994). 

 Drug discrimination may also be capable of differentiating between drugs that have the 

same site of action but differing efficacy levels.   For example, zolpidem is a full agonist at α1-

containing GABAA receptors.  Partial and full agonists binding allosteric sites on GABAA 

receptors were evaluated for their ability to substitute in subjects trained to discriminate 3.0 

mg/kg zolpidem from saline.  The GABAA α1 partial agonist SL651498 only partially substituted 

for zolpidem however the full agonist CL 218872 completely substituted for zolpidem (Mirza, 

Rodgers, & Mathiasen, 2006). 

 

Analysis of drug discrimination data 

The degree of similarity of a test drug to that of the training drug is generally 

empirically quantified.  Two of the most common methods of quantification are the examination 

of group mean drug-lever selection data and the examination of first fixed ratio (FFR) completed 

data.  Mean group percentage drug-lever selection is perhaps the common method in published 

studies.  An advantage of this method is that it is data inclusive.  Group mean data summarizes 

the behavior of all subjects during a test session and provides a graded metric from what is often 

quantal individual data.  Specifically, within individual subjects, drug-lever selection is often an 

all or none phenomena.  All responding is often allocated on the vehicle-appropriate lever until a 

dose is reached at which all responding switches to the drug-appropriate lever.  The dose in 

which this switch takes place often differs between subjects.  Aggregating this individual subject 

data produces a graded mean dose response curve facilitating calculations such as ED50 and EC50 

values and potencies.   A disadvantage of group mean data is that is an artificial construct that 
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does not generally represent the responding of any of the individual subjects.  An alternative 

metric of drug-appropriate responding tabulates the lever on which each subject completes the 

first fixed ratio value, generally referred to as the first fixed ratio (FFR).  Whereas percent drug 

lever responding averages the graded responses of individual subjects, the FFR pools quantal 

yes/no data from individual subjects before the presentation of a reinforcer.  Although FFR data, 

if pooled to produce a group mean is also an artificial construct, it may have some advantage in 

that it is free from the influences of reinforcer presentation upon subsequent behavioral 

allocation when both responses are reinforced during testing. 

 

Interpretation of substitution data 

The degree to which a subject identifies a novel drug stimulus as a training drug is often 

segregated into three descriptive categories: full substitution, partial substitution and no 

substitution.  The numerical ranges which are defined as full, partial or no substitution are 

entirely arbitrary.  In some laboratories 60% to 79 % and 80% to 100% indicates partial and full 

substitution, respectively (Wiebelhaus, Vunck, Meltzer, & Porter, 2012).  In the present proposal 

for consistency with other publication from our laboratory I have defined responding of less than 

20% as no substitution, 21%-79% as partial substitution and 80%-100% as full substitution 

(Shelton, 2007, 2009, 2010, Shelton & Nicholson, 2010, 2012, Shelton & Slavova-Hernandez, 

2009).   

There is little argument within the drug discrimination field regarding the interpretation 

of full substitution and no substitution.  However, when a novel compound is administered and 

the maximal drug-appropriate responding across the entire range of doses tested only reaches the 

level of partial substitution, interpretation of the data can become more challenging.  Several 
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possible data sets can yield similar mean group levels of partial substitution.  For instance, one 

common occurrence is that a test drug produces full substitution in a subset of subjects but fails 

to substitute in the remaining subjects.  Another possibility is that partial substitution is produced 

in all subjects.  Unfortunately, most publications do not provide sufficient data to allow for 

extended interpretation of partial substitution results. 

In some studies it is possible to explain partial substitution mechanistically based on drug 

affinity, efficacy or intrinsic activity (Solinas et al., 2006).  For example, high affinity NMDA 

channel blockers fully substitute for the high affinity NMDA antagonist PCP but moderate 

affinity channel blockers sometimes produce partial substitution for PCP (Nicholson & Balster, 

2003).  The most objective explanation of partial substitution, therefore, is the existence of a 

limited similarity in the neurochemistry underlying the stimulus properties of the training drug 

and the test drug. 

 

  



www.manaraa.com

30 

 

Studies of compound cues and drug mixtures 

 

Given the repeated demonstrations that N2O interacts with multiple ligand gated ion 

channels and G protein-coupled receptors (i.e. opioids, GIRK) more than one interaction may 

mediate the discriminative stimulus effects of N2O.  Considering the sensitivity of the task to the 

neuropharmacology of drugs, studies of compound stimuli and drug mixtures modeling artificial 

compound stimuli may aid in the interpretation of cross-substitution data if N2O has multiple cue 

components.  Two types of compound cues have been demonstrated in drug mixture 

discrimination studies: redundant cues and conditional cues.  In a redundant cue either 

component of a discriminative stimulus based on a drug mixture will fully substitute for the 

discriminative stimulus effects of that drug mixture.  In a conditional cue both components of a 

drug mixture must be presented together to fully substitute for the discriminative stimulus effects 

of a training drug mixture.  Administration of a singular component of the mixture will not elicit 

substitution for the mixture training cue.  As an example, in a classic study performed by 

Stolerman, a group of rats was trained to discriminate a mixture of 0.4 mg/kg nicotine combined 

with 0.2 mg/kg midazolam versus saline (Stolerman, Rauch, & Norris, 1987).  Nicotine and 

midazolam have distinct mechanisms of action and little to no overlap in stimulus effects under 

circumstances where either drug is trained versus vehicle.  However, when trained together, both 

nicotine administered alone and midazolam administered alone produced partial substitution for 

the “AND-mixture”.  These findings have been both directly and systematically replicated in 

studies of nicotine + midazolam mixtures (Garcha & Stolerman, 1989) as well as amphetamine + 

pentobarbitone mixtures (Mariathasan, Garcha, & Stolerman, 1991).  Further, these mixture cues 

appear to react predictably to antagonist pretreatment.  For example, complete antagonism of the 
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nicotine and pentobarbital mixture stimulus was only possible by administering a mixture of 

flumazenil (Ro 15-1788) and mecamylamine (Stolerman et al., 1987).  These data demonstrate 

that each component of a drug mixture is capable of eliciting at least partial substitution for that 

mixture, demonstrating that the individual components of a drug mixture cue are perceived 

separately rather than as a new and unique stimulus complex.  

These studies provide two major considerations for the interpretation of data if N2O has a 

compound cue.  The first ramification of these studies is the possibility that mimicking any 

individual component of nitrous oxides stimulus may not engender full substitution.  Again, both 

nicotine administered alone and midazolam administered alone produced at best partial 

substitution for a nicotine+midazolam mixture (Stolerman, Rauch, & Norris, 1987).  It might 

therefore be expected that if the stimulus effects of N2O are mediated by NMDA antagonism and 

GABAA positive modulation that neither class of drugs alone would produce full substitution for 

nitrous oxide.  A second ramification of these studies is that it may not be possible to 

pharmacologically antagonize the stimulus effects of nitrous oxide with any one drug.  Instead it 

may require that antagonists for all parts of nitrous oxides stimulus effects be given together to 

fully block its cue.  

Substitution results inferred based on combinations of two distinct drugs are informative.  

However, a more appropriate comparison may be individual drugs which have actions at 

multiple receptors.  Two examples of drugs with compound cues are ethanol as well as the vapor 

anesthetic isoflurane.  Ethanol interacts with several receptor systems in vitro and in vivo 

including GABAA (Helms, Rogers, & Grant, 2009), NMDA (Kotlinska & Liljequist, 1997) and 

5HT1B/2C  (Andrade et al., 2011).  When tested in ethanol trained animals, benzodiazepines 

(Grant et al., 2000, Shelton & Grant, 2002), barbiturates (York, 1978),  NMDA channel blockers 
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(Kotlinska & Liljequist, 1997, Shelton & Grant, 2002) and, depending on the dose of ethanol 

trained, serotonergic agonists fully substitute for ethanol (Grant, Colombo, & Gatto, 1997).  

These data somewhat contradict the prior discrete mixture data in showing that a single 

component of a compound training cue is sufficient to elicit complete substitution for that cue.   

The volatile vapor isoflurane may also have a multiple component discriminative 

stimulus.  Isoflurane has been reported to potentiate GABAA, glycine, kainate and 5HT3 receptor 

currents and reduce α4β2 and α4β4 containing nicotinic acetylcholine, NMDA and AMPA 

receptor current in Xenopus oocytes (Yamakura & Harris, 2000).  The discriminative stimulus 

effects of isoflurane appear to be mediated by both GABAA receptor positive modulation and 

NMDA receptor antagonism (Shelton & Nicholson, 2010).  In mice trained to discriminate 6,000 

ppm isoflurane vapor from air the benzodiazepines midazolam and zaleplon, the barbiturate 

pentobarbital as well as the competitive NMDA antagonist CGS 19755 all produced at least 

partial and in some cases full substitution for isoflurane (Shelton & Nicholson, 2010).  As was 

the case with ethanol, the presence of multiple stimulus contributors did not appear to diminish 

the ability of any of these individual drugs to engender significant substitution.    

The phenomena of overshadowing may also have implications in subjects trained to 

discriminate N2O from vehicle.  Overshadowing can occur when the stimulus properties of one 

cue component of a compound stimulus are much more robust than other components (Jarbe & 

Johansson, 1976, Johansson & Jarbe, 1976).  In these cases the stronger stimulus component may 

mask the ability of drugs which mimic the weaker cue component(s) to engender substitution.  

For instance, four groups of rats were trained to discriminate the anticholinergic drug ditran 

alone from vehicle, ditran plus the acetylcholinesterase inhibitor neostigmine from vehicle, and 

either ditran plus a low or high dose of physostigmine from vehicle.  Neostigmine indirectly 
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stimulate both nicotinic and muscarinic receptors by reversibly inhibiting cholinesterase.  Ditran 

plus a low or high physostigmine dose did not substitute for ditran alone.  It was believed that the 

presence of physostigmine prevented recognition of the ditran portion of the mixture.  In a later 

study physostigmine plus ditran did not produce physostigmine-like stimulus effects (Johansson 

& Jarbe, 1976). Therefore it is possible that even if N2O has multiple stimulus components, if a 

minor component is significantly weaker than the primary component this may produce a false 

negative.   

 

Cross substitution of inhalants 

One of the goals of the present series of studies is to examine the similarity between the 

stimulus effects of N2O and other abused inhalants.  The discriminative stimulus properties of 

several abused inhalants have been characterized in our laboratory.  1,1,1-trichlorethane (TCE) 

has been trained as a discriminative stimulus in mice (Shelton, 2009, 2010, Shelton & Nicholson, 

2012).  The mu opioid agonist morphine, several NMDA antagonists and nicotine all fail to 

substitute for TCE (Shelton, 2010).  In contrast, midazolam, diazepam and pentobarbital produce 

dose-dependent increases in TCE-appropriate responding (Shelton & Nicholson, 2012).  

However, the benzodiazepine antagonist flumazenil did not antagonize TCE’s discriminative 

stimulus therefore it is unlikely that TCE acts at the benzodiazepine recognition site. 

The abused solvent toluene and N2O have numerous overlapping molecular targets [for review 

see (Bowen et al., 2006)].  Targets of toluene include NMDA, GABAA, glycine, 5HT3, neuronal 

nicotinic acetylcholine, dopaminergic and muscarinic receptors as well as sodium, calcium and 

potassium channels.  Several studies have characterized toluene’s discriminative stimulus 

(Knisely et al., 1990, Rees et al., 1987, Shelton, 2007, Shelton & Nicholson, 2013, Shelton & 
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Slavova-Hernandez, 2009).  Benzodiazepines (Knisely, Rees, & Balster, 1990, Shelton & 

Nicholson, 2013) and barbiturates (Rees, Knisely, Jordan, & Balster, 1987) produce robust 

substitution in toluene trained subjects.  However, numerous other classes of drugs which have 

been implicated in molecular actions of toluene fail to substitute in toluene-trained mice (Shelton 

& Nicholson, 2013).  These studies suggest that even where in vitro and ex vivo data 

demonstrated multiple receptor involvement in the CNS effects of a drug, the stimulus effects of 

that drug need not be as promiscuous.   

In sum the drug discrimination task is exceptionally useful for investigating the 

mechanisms of action underlying the abuse-related behavioral effects of drugs and exploring 

their pharmacological sites of action.  This paradigm has been applied in the study of many drugs 

of abuse some of which, like N2O may affect more than a single CNS target.  I therefore believe 

that it will be a useful procedure for examining the abuse-related effects of N2O. 
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Experimental Hypotheses 

 

 Given the above background I formulated several hypotheses in regard to the receptor 

mechanism underlying the discriminative stimulus effects of N2O.  First, N2O reduces agonist 

mediated NMDA current in amygdalar slices (Ranft et al., 2007), hippocampal preparations 

(Jevtović-Todovorić et al., 1998, Mennerick et al., 1998) and in substantia nigra cells (Balon et 

al, 2003) as well as in heterologous expression systems (Ogata et al., 2006, Petrenko et al., 2010, 

Sato et al., 2005).  Due to the strong evidence of interactions at NMDA receptors I believe 

NMDA antagonism is the primary mediator of the discriminative stimulus effects of N2O.   

NMDA receptors have several binding sites through which compounds can decrease 

receptor function (Nankai, 1998, Scatton, 1993). The binding sites include the glutamate binding 

site which can be antagonized directly as well as the binding site for the co-agonist glycine.  In 

addition NMDA receptor function can be uncompetitively antagonized by drugs which binding 

within the channel or at the polyamine site (Gibson, Harris, Rogers, & Littleton, 2002).  Given 

data showing animals can distinguish between NMDA antagonists acting upon the different sites 

it may be possible to more accurately pinpoint the site of action of N2O using specific 

pharmacological tools, but at this point the available data do not readily lend themselves to a 

specific hypothesized interaction domain.  

In addition to antagonizing NMDA receptors, in isolated systems as well as heterologous 

expression systems, N2O potentiates agonist mediated GABAA currents (Dzoljic & Van Duijn, 

1998, Hapfelmeier et al., 2000, Hapfelmeier et al., 2001).  Further, the subjective effects of N2O 

are attenuated by administration of a benzodiazepine site antagonist, flumazenil (Zacny et al., 

1995).  Therefore I hypothesize that GABAA receptor positive allosteric modulation may also 
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play a role in the abuse-related discriminative stimulus effects of N2O.  GABAA receptor activity 

can be increased by drugs which bind at the agonist-binding site, drugs which indirectly 

increasing GABA levels as well drugs which bind at one of the positive allosteric sites.  Positive 

allosteric modulatory sites have been identified for the binding of barbiturates, benzodiazepines 

and GABA positive neurosteroids.   Rodent drug discrimination assays appear to be capable of 

differentiating between drugs acting at some but not all of these sites.  For instance, direct 

agonists such as muscimol can be differentiated from positive allosteric modulators (Jones & 

Balster, 1998).  Specifically, the direct extrasynaptic GABAA receptor agonist gaboxadol 

produces full substitution for muscimol, however, the positive allosteric modulator diazepam 

produced ~50% substitution for muscimol (Jones & Balster, 1998).  However, there is little 

difference in the degree of substitution produced by barbiturates and benzodiazepines in cross 

substitution testing.  When pentobarbital is trained as a discriminative stimulus midazolam 

produced full substitution for pentobarbital (Grech & Balster, 1994).  Furthermore, both 

midazolam and pentobarbital produced about the same degree of substitution in isoflurane-

trained mice whereas muscimol failed to substitute for isoflurane entirely (Shelton & Nicholson, 

2010).  Given that GABAA receptor positive allosteric modulators are distinguishable from direct 

GABAA agonists in the drug discrimination task I would expect that some degree of GABAA 

receptor site specificity of N2O can be determined but it will likely not be as clear as data 

generated with NMDA antagonists. 

My final aim was to determine the degree of similarity between N2O and other abused 

inhalants.  Based on the existing data showing that both toluene and 1,1,1-trichloroethane have 

GABAergic effects in ex vivo and in in vitro assays (Beckley & Woodward, 2011, Beckstead et 

al., 2000, Filley, Halliday, & Kleinschmidt-DeMasters, 2004) as well as GABAA positive 
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modulator-like effect in drug discrimination (Rees et al., 1987), I predict that there may be some 

overlap in the discriminative stimulus effects of N2O and these inhalants.  A prior drug 

discrimination study from our laboratory has shown that the discriminative stimulus effects of 

isoflurane are elicited by both NMDA antagonists as well as GABAA positive modulators 

(Shelton & Nicholson, 2010).  As I hypothesize that the stimulus effects of N2O are also the 

result of positive GABAA modulation and NMDA antagonism, I predict that the stimulus effects 

of N2O will be more similar to isoflurane than either toluene or 1,1,1-trichloroethane.  However, 

this hypothesis is somewhat more tentative given other data from our laboratory showing that 

N2O does not produce isoflurane-like stimulus effects in mice trained to discriminate isoflurane 

from air (Shelton & Nicholson, 2010).  
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Materials 

 

Subjects 

Forty adult male B6SJLF1/J mice (The Jackson Laboratory, Bar Harbor, Maine) served 

as subjects.  These F1 hybrid mice, derived from C57BL6/J female and SJL/J male parents, have 

been used extensively in prior inhalant drug discrimination studies conducted in our laboratory 

(Shelton, 2007, 2009, 2010, Shelton & Nicholson, 2010, 2012, Shelton & Slavova-Hernandez, 

2009).  Nine of forty mice were not naïve; having been previously trained to discriminate 40% 

N2O from 100% oxygen under the supervision of another student in the laboratory (unpublished).  

All subjects were individually housed on a 12-h light/dark cycle (lights on 6:00 AM).  To 

promote operant responding the mice were maintained at 85% free feed body weights by 

restricting food intake to 2-5 grams of standard rodent chow per day (Harlan, Teklad, Madison, 

WI, USA) post training.  Water was available ad libitum except during experimental sessions.  

The first determination of 85% free feed body weight occurred approximately three weeks after 

arrival from the vendor and re-determination occurred after 1-2 week biannual ad libitium 

feeding periods.  For example, a mouse weighing 32 grams week-3 of the study was initially 

maintained at a food restricted weight of 27 grams. .When not in the laboratory the mice were 

housed on an Enviro-GardTM B ventilator cage rack (model 59016; Lab Products Inc., Seaford, 

DE, USA) in a colony room maintained at 770F with 44% humidity. 

 

Apparatus 

Operant sessions were conducted in two-lever mouse operant conditioning chambers 

equipped with 0.01-ml liquid dippers (model ENV-307AW; MED Associates, St. Albans, VT, 

USA).  One yellow LED lever light was above each of two response levers which were located 
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on the front chamber wall.  A single 5-Watt LED house light was located at the top center of the 

chamber rear wall.  Drug discrimination schedule conditions and data recordings were controlled 

by a MED Associates interface and MED-PC version 4 software (MED Associates, St. Albans, 

VT, USA).  The milk solution reinforcer consisted of 25% sugar (Great Value Foods; Walmart, 

Richmond, VA, USA), 25% nonfat powdered milk (Great Value Foods; Walmart, Richmond, 

VA, USA), and 50% tap water by volume. 

Initially exposures to oxygen and N2O /oxygen gas mixtures were conducted within a 

converted 9.9-L Secador mini vacuum desiccator cabinet (Bel-Art Products, Pequannock, NJ, 

USA) that served as an exposure chamber.  Following exposure, discrimination training was 

conducted in standard mouse operant conditioning chambers housed inside 63.5 cm x 41.9 cm x 

39.4 cm sound attenuating cubicles (Med Associates, St Albans, VT, USA).  The appropriate 

mixture of N2O and oxygen was controlled by a manually-operated metering system.  An Airsep 

Onyx+ oxygen concentrator (Buffalo, NY, USA) generated 98+% oxygen directed by Tygon 

tubing (Fisher Scientific, Hampton, NH, USA) through a rotometer to regulate oxygen flow rate.  

Nitrous oxide gas (National Welders Supply, Richmond, VA, USA) flowed from a medical 

compressed N2O cylinder through a single stage regulator.  The N2O flow rate was regulated by 

a second rotometer.  Downstream from the rotometers oxygen and N2O were combined at a Y 

fitting prior to passing through a hose barb into the 9.9-L inhalant exposure chamber.  Waste gas 

was expelled through a second length of Tygon tubing into a fume hood.  

After several months of training and testing it was concluded that the above system was 

inadequate due to the fast offset/limited duration of action of N2O following the cessation of 

exposure (see Results).  Therefore, the remainder of the study was conducted using a system 

which combined the inhalant exposure and operant test equipment a single apparatus (Appendix 
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1).  The revised apparatus consisted of four 26.0-L acrylic exposure cubicles which encased 

modified two-lever mouse operant conditioning chambers.  To accommodate substitution tests of 

vapors each exposure chamber was also fitted with an internal 80mm 24-Volt DC fan mounted in 

an acrylic frame with a perforated metal filter paper attachment grill.  The fan motors were 

connected to MED-PC 28v output allowing automated control of vapor volatilization.  Vapor 

exposures were accomplished by injection of a fixed volume of volatile liquid onto filter paper 

using a glass gas-tight syringe.  The ideal gas law as derived for vapors at standard laboratory 

temperature and pressure was used to determine the appropriate volume of volatile liquid 

introduced into the exposure chamber (Shelton, 2007).  Nitrous oxide/oxygen flow was 

accomplished using the delivery system previously described (Appendix 2). 

Drugs 

Medical N2O cylinders were obtained from National Welders Supply (Richmond, 

Virginia, USA).  Oxygen was produced by an Airsep Onyx+ oxygen concentrator (Buffalo, NY, 

USA).  Memantine, cis-4-[Phosphomethyl]-piperidine-2-carboxylic acid (CGS-19755), 

muscimol, trans-(±)-3,4-Dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide 

hydrochloride (U50-488H), NG-Nitro-L-arginine methyl ester hydrochloride (L-NAME), (±)-8-

Hydroxy-2-dipropylaminotetralin hydrobromide (8-OH DPAT) and 1-(3-

Chlorophenyl)piperazine hydrochloride (mCPP) were purchased from Tocris Bioscience (St. 

Louis, MO, USA).  Pentobarbital, valproic acid, gaboxadol (THIP), (+)-MK-801 (dizocilpine), 

nicotine bitartrate, toluene, TCE and 2-butanol were purchased from Sigma-Aldrich Chemicals 

(St. Louis, MO, USA).  Isoflurane and ketamine were purchased from Webster/Patterson 

Veterinary Supply (Devens, MA, USA).  Midazolam was a gift of Roche Pharmaceuticals 

(Nutley, NJ, USA).  Methoxyflurane was obtained from Pitman-Moore (Mundelein, IL, USA).  
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Sarcosine and ethanol (95% weight/volume) were obtained from Acros Organics (Fair Lawn, NJ, 

USA).  Morphine sulfate, D-amphetamine and 7-Chloro-4-hydroxy-3-(3-phenoxy)phenyl-2(1H)-

quinolinone (L-701,324) were obtained from the National Institute on Drug Abuse drug supply 

program (Bethesda, MD, USA).  (+)-4-[(αR)-α-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-

methoxybenzyl]-N,N-diethylbenzamide (SNC-80) was generously provided by Kenner Rice at 

IRP-NIDA (Bethesda, MD, USA). 

All drugs except ethanol were prepared to achieve a constant injection volume of 10 

ml/kg.  Ethanol doses up to 1 g/kg were prepared to achieve an injection volume of 10 ml/kg.  To 

prevent tissue damage, ethanol doses higher than 1 g/kg were accomplished by administering 

higher volumes of 100 mg/ml ethanol.  Nicotine doses were based on the weight of the base and 

pH adjusted to between 6 and 7 with 0.1 N NaOH.  L-701,324 was dissolved in 10% cremophor 

in sterile water.  The vehicle for SNC-80 was 0.9% saline with one or two drops of hydrochloric 

acid pH adjusted to between 6 and 7. All other injected compounds were dissolved in 0.9% 

saline. 

Morphine sulfate and nicotine bitartrate were administered subcutaneously (s.c.).  All 

other injected compounds were administered intraperitoneally (i.p.).  Exposure to isoflurane, 

methoxyflurane, toluene, TCE and 2-butanol were accomplished by fixed volume injection onto 

filter paper with volatilization and circulation aided by the MED-PC controlled fans.  10% 

cremophor dissolved in sterile water served as the vehicle control for L-701,324.  0.9% saline 

solution was used for injections during all other control tests. 

SNC-80, sarcosine, memantine, muscimol, gaboxadol (THIP), CGS 19755, L-701,324, 

L-NAME and U50-488H were administered with a 30 minute pre-treatment time.  mCPP was 

administered with a 20 minute pre-treatment time.  All other injected drugs were administered 10 
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minutes before the operant test session.  Pre-treatment conditions and doses/concentrations used 

for substitution tests are summarized in Table 1.  Except when indicated, N2O exposures were 

begun 10 minutes before the start of the operant session and continued for the duration of the 

operant test session.  Exposures to volatile vapors, oxygen and N2O-oxygen mixtures were begun 

10 minutes before the session and continued for the duration of the 5 minute test session. 
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Table 1.  Summary of pretreatment conditions, doses tested and corresponding sources used for 

substitution tests in subjects trained to discriminate 60% N2O + 40% O2 from 100% O2. 

 

Drug Vehicle Route of 

administration 

Pretreatment 

time 

Doses/concentrations tested 

N2O 13,14 oxygen inhaled 10 mins 5, 10, 20, 40, 60, 80% 

     

L-701,324 13,14 10% cremophor/ 

sterile water 

i.p. 30 mins 3, 10, 17, 30 mg/kg 

CGS 19755 13,14 0.9% saline i.p. 30 mins 1, 3, 10, 17 mg/kg 

(+)-MK-801 11,13,14 0.9% saline i.p. 10 mins 0.03, 0.17, 0.3, 0.56, 0.75 

mg/kg 

Ketamine 6 0.9% saline i.p. 10 mins 3.0, 10.0, 15.6, 30.0 mg/kg 

Memantine 5 0.9% saline i.p. 30 mins 3, 10, 17, 30, 56 mg/kg 

Sarcosine 4 0.9% saline i.p. 30 mins 100, 300, 600, 1200 mg/kg 

     

Pentobarbital 13,16 0.9% saline i.p. 10 mins 3, 10, 17, 30, 50 mg/kg 

Midazolam 11 0.9% saline i.p. 10 mins 1, 3, 10, 17, 30, 56 mg/kg 

Valproic acid 13,16 0.9% saline i.p. 30 mins 100, 300, 560 mg/kg 

THIP 14 0.9% saline i.p. 30 mins 0.3, 1.0, 3.0, 10.0 mg/kg 

Muscimol 13 0.9% saline i.p. 30 mins 0.3, 1.0, 1.7, 3.0 mg/kg 

     

Isoflurane 9,13 air inhaled 10 mins 1000, 2000, 4000, 6000 

ppm 

Methoxyflurane 12 air inhaled 10 mins 500, 1000, 2000, 4000 ppm 

Toluene 2,9,10,13,15 air inhaled 10 mins 500, 1000, 2000, 4000, 

8000 ppm 

TCE 10,11,13,14 air inhaled 10 mins 1000, 4000, 8000, 12000 

ppm 

2-butanol 10 air inhaled 10 mins 10, 30, 100 ppm 

     

Ethanol 14 0.9% saline i.p. 10 mins 1.0, 1.5, 2.0, 2.5 g/kg 

mCPP 14  0.9% saline i.p. 20 mins 0.1, 1.0, 5.6, 10.0 mg/kg 

8-OH DPAT 1 0.9% saline i.p. 10 mins 0.1, 0.3, 1.0, 1.56 mg/kg 

     

D-amphetamine 
2,17 

0.9% saline i.p. 10 mins 0.1, 0.3, 1.0, 1.56 mg/kg 

Morphine 11 0.9% saline s.c. 10 mins 1.0, 1.7, 3.0, 10.0, 30.0 

mg/kg 

SNC-80 3,8 0.9% saline i.p. 30 mins 3, 10, 17, 30, 56 mg/kg 

U50-488H 17 0.9% saline i.p. 30 mins 1.0, 3.2, 7.0, 10.0 mg/kg  

     

nicotine 11 0.9% saline s.c. 10 mins 0.1, 0.3, 1.0, 1.7, 2.5 mg/kg 

     

L-NAME 7 0.9% saline i.p. 30 mins 1, 10, 30 mg/kg 
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Methods 

 

Training procedure 

Upon arrival mice were individually housed in 31.5cm x19.5cm clear polycarbonate 

cages with corncob bedding (Teklad, Madison, WI, USA). Mice were habituated to the home 

cage and maintained on free feed (Teklad Lab Diet, Madison, WI, USA) for seven days. During 

the last two days of habituation the mice were weighed, handled and tails were marked with a 

color coded numeric identifier in permanent marker.  Beginning the following week mice were 

trained once daily.  Adjustment to the desired final fixed ratio requirement, timeout length and 

session length occurred in four stages. 

 

1.  Initial training 

Initial operant training began with one 14-hour overnight session conducted during the 

dark cycle.  At the beginning of the session the house light and light above each lever were 

illuminated.  The first 6 hours of the program provided non-contingent intermittent access to a 

0.01 ml dipper cup of sweetened milk (25% sugar, 25% nonfat powdered milk and 50% tap 

water by volume) to engender head entries into the dipper aperture.  During this 6 hour period 

the dipper cup was available for the first 10 seconds of every 60 second period. For the 

subsequent 8 hours, presentation of milk only occurred after completion of a response on either 

lever under a fixed ratio 1 (FR-1) schedule of reinforcement.  Each lever press resulted in 10 

seconds of milk access and a 5 second timeout in which no responses were recorded.  Following 

the overnight session mice were trained once daily Monday to Friday for the remainder of the 

study. 
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2.  Decreasing session length and one active lever 

The first session following the initial 14 hour training procedure was a 4 hour session 

under a FR 1 schedule of reinforcement where completion of the FR requirement on either lever 

produced reinforcement.  Each lever press resulted in 3 seconds of access to 0.01 ml sweetened 

milk.  Over the next four days the session length was shortened to 2 hours, 1 hour, 40 minutes 

then 30 minutes. 

 

3.  Increasing the fixed ratio and decreasing the session length 

Change in active lever assignment, FR or session length were accomplished by changing 

only one variable each training day.  Initially the active lever was alternated daily at FR 1.  On 

the third day the FR requirement was increased to FR 2.  On the fourth day the alternate lever 

was reinforced on a FR 2 schedule.  Once mice were reliably alternating responding between 

levers the session length was shortened to 20 minutes.  

For the subjects trained in the 9.9-L apparatus the operant session length was gradually 

decreased from 20 minutes to 5 minutes across successive days.  Once the session length was 

decreased to 5 minutes the 100% oxygen and 60% N2O+40% O2 pairing began.  Subjects were 

trained to discriminate a 10 minute exposure to 60% N2O+40% O2 mixture from 100% O2.  

Subjects were assigned one lever as correct after oxygen exposure and the alternate lever as 

correct after 60% N2O+40% O2 exposure.  Lever assignments were counterbalanced so that an 

equal number of subjects had right and left levers designated as N2O appropriate.  Drug and 

vehicle were presented in a double alternation sequence across days (O2, O2, N2O, N2O). 

For the subjects trained in the 26.0-L apparatus three parameters were adjusted over the 

course of initial training.  The operant session length was gradually decreased from 30 minutes to 
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15 minutes and then a timeout of increasing duration, up to the desired timeout of 10 min, was 

introduced prior to the start of the operant session. During the timeout all lights were off and 

responses were not recorded.  Once the animals reliably responded only after the completion of 

the timeout, the session length was decreased to five minutes and discrimination training 

between 60% N2O+40% O2 and 100% O2 began.  Over successive training days the FR 

requirement was gradually increased to the final target value of FR 12. 

 

 

Discrimination acquisition criteria and N2O concentration-effect curve 

The double alternation of training conditions continued Monday through Friday until 

mice acquired the discrimination according to the designated acquisition criteria.  In at least 8 of 

10 consecutive training days the subject must have emitted the first fixed ratio on the correct 

lever.  Additionally, in each of these 8 sessions a minimum of 80% of total lever presses must 

have been emitted on the correct lever.  After meeting both criteria, subjects were eligible to test 

if they maintained accurate stimulus control on training sessions between tests.  Specifically the 

subject must have emitted the first fixed ratio on the correct lever and minimum 80% of total 

lever presses on the correct lever in all of the training sessions between each Tuesday and Friday 

test session.  If an animal failed to maintain this level of performance the double alternation 

training schedule was continued until the subject met the daily accuracy criteria for three 

consecutive days.  
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Data collection 

The dependent measures collected were percentage nitrous oxide lever responding 

(SEM), operant response rate (SEM) and the lever upon which the first full fixed ratio was 

completed.  Mean percentage nitrous oxide lever responding was the number of responses on 

N2O-appropriate lever ÷ (responses on N2O-appropriate lever + responses on vehicle-appropriate 

lever).  Session data were recorded in 30-second bins.  For generalization curves generated using 

the 9.9-L exposure apparatus which necessitated operant testing under room air, only the 1st 

minute data were analyzed.  For generalization curves generated in the 26.0-L apparatus which 

housed operant test equipment inside an inhalant exposure chamber full 5 minute test session 

data were analyzed. 

 

 

Pharmacokinetic testing procedure: Onset of discriminative stimulus effect 

To determine the onset of discriminative stimulus effects of N2O, mice were exposed to 

60% N2O for progressively shorter periods of time prior to the start of the 5 minute operant test 

session. The timeout period prior to the onset of the operant session remained 10 minutes but 

introduction of N2O to oxygen flow into the operant chamber began later into the timeout. Group 

mean percentage drug lever responding and operant response rates were calculated for 1, 3, 7 and 

10 minute pre-exposure durations. 

 

Pharmacokinetic testing procedure:  Effect of exposure duration and duration of stimulus effects 

To approximate whether the training exposure duration of 10 minutes was sufficient to 

produce steady-state tissue concentrations of N2O, the mice were exposed to a concentration of 
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N2O which produced partial substitution for both the normal 10 minute pretest exposure duration 

as well as for a longer 20 minute pretest exposure duration.  To compare the exposure conditions, 

an ANOVA with repeated measures (concentration X time) was used.  This was conducted for 

both percentage drug-lever responding data and response rate data during the 60% N2O/10 

minute control session and for both 10 minute and 20 minute 30% N2O exposures.   

To estimate the offset of discriminative stimulus effects, mice were exposed to 100% O2 

or 60% N2O+40% O2 for 10 minutes.  Progressively longer timeout periods prior to the 

discrimination session were then instituted.  Group mean percentage N2O lever responding and 

operant response rates were calculated for 1, 3 and 5 minute test delays. 

 

Cross substitution test procedure 

Substitution tests were conducted each Tuesday and Friday provided that the mice 

continued to exhibit accurate stimulus control during Monday, Wednesday and Thursday training 

sessions.  On test days, both levers were active.  Completion of the FR on either lever resulted in 

reinforcer presentation.  When the test drug was an injected compound both the O2 and N2O 

control test exposures were preceded by vehicle injections.  

 

Data analysis 

Both the percentage N2O-lever responding and operant response rates generated for 

overall responding were analyzed using an analysis of variance (ANOVA) with repeated 

measures.  In all cases an effect was considered significant if P< 0.05.  Dunnet’s post hoc 

comparison tests were conducted where appropriate.  Responding of less than 20% is considered 

no substitution, 21%-79% is considered partial substitution for N2O and 80%-100% is 

considered full substitution for N2O.  Where possible confidence limits, potencies and half 
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maximal effective concentration or dose values (EC50 or ED50) of percentage N2O-lever 

responding and operant response rates were calculated using a Microsoft Excel spreadsheet 

based on published methods (Bliss, 1967).  
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Results 

 

Aim 1: Training N2O as a discriminative stimulus and characterizing the pharmacokinetics of its 

discriminative stimulus effects 

Of the 16 mice which began training, 13 acquired the discrimination between 60% 

N2O+40% O2 and 100% O2 vehicle when operant training was conducted in standard operant 

chambers following cessation of gas exposure.  Figure 1 plots the number of training sessions 

required to reach the acquisition criteria for each individual subject as a step graph.  The shortest 

number of days to acquire was 88 and the most extended was 180 with a mean of 137 (9) 

training sessions for 13 of 16 mice to meet criteria.  One of the remaining subjects was moved to 

the new system as a consequence of failing to acquire the discrimination after an excess of 195 

training sessions.  Training under room air was ceased after 45 sessions for two remaining 

subjects newly added to the study. 

 When exposed in 9.9-L exposure system and tested in room air, N2O produced 

concentration-dependent substitution for the 60% training concentration [F(12,72)=1.61, P<0.05] 

(Figure 2, upper panel).  Only data from the first minute of the 5 minute test session are shown.  

Control tests that followed 10 minutes exposure to oxygen or the N2O-oxygen mixture produced 

a mean of 15% (8) and 86% (8) N2O respectively.  Concentrations of 20% to 60% N2O 

produced partial substitution.  Full substitution for the 60% N2O+40% O2 training condition 

occurred at a test concentration of 66% N2O.  Nitrous oxide exposure did not alter operant 

response rates (Figure 2, lower panel).  Response rates across all N2O test concentrations did not 

significantly differ from oxygen control response rate [F(12,72)=3.22, P=0.42].  Using these 

training and test procedures acquisition was so lengthy and eligibility to test infrequent that the 
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training apparatus was modified to allow exposure to the N2O or oxygen training conditions to 

be continued during the operant training sessions. 

The same sixteen mice were subsequently retrained in a 26.0-L continuous 

exposure/operant test system under conditions in which 60% N2O+40% O2  or 100% O2 

exposure was continued throughout the operant discrimination training session (Table 2). 

Subsequent re-training under these new conditions required a mean of 45.4 (8.4) training days 

to re-establish the discrimination.  Further, the three subjects who previously did not meet 

acquisition criteria were able to acquire the discrimination in a mean 67.3 ( 17.7) additional 

training days.  As subjects acquired more rapidly in continuous exposure/operant test system six 

naïve subjects were ordered to supplement the remaining subjects and replace two subjects 

which died. 

Figure 3 (upper panel) shows the N2O concentration effect curve in all subjects 

retrained in the continuous exposure/test system.  Nitrous oxide produced concentration-

dependent full substitution for the 60%+40% O2 training concentration with an EC50 of 28% (CL 

11% – 67%).  Concentrations below 40% N2O did not produce significant substitution for the 

training condition.  Full substitution occurred at the training concentration as well as the 80% 

N2O exposure condition.  Nitrous oxide exposure significantly attenuated operant response rates 

at the highest tested concentration of 80% (Figure 3, lower panel) [F(12,72)=5.3, P<0.05]. 

At this point in the study the subjects were euthanized due to the presence of an 

unrelated viral disease in the rodent colony which is normally asymptomatic in adult mice.  

However, this unfortunate circumstance permitted the training of new subjects which did not 

have a complicated acquisition training history.  A total of 24 naïve subjects were trained to 

discrimination 60% N2O+40% O2 from 100% O2 in the continuous exposure/test apparatus.  The  
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Figure 1.  Stepwise acquisition plot showing the day acquisition criteria was met for 13 of 16 

mice trained to discriminate 60% nitrous oxide + 40% oxygen from 100% oxygen. Data are from 

animals in which operant training sessions were conducted post-exposure in room air.   
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Figure 2.  Nitrous oxide substitution concentration effect (upper panel) and operant response rate 

(lower panel) curves in mice trained to discriminate 60% nitrous oxide + 40% oxygen from 

100% oxygen following the cessation of 10 minutes of exposure.  Points above O2 and N2O 

reflect the 60% nitrous oxide + 40% oxygen and the 100% oxygen control conditions.  * indicate 

significant (p< 0.05) differences from oxygen control. 
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Table 2.  Number of training days for individual subjects to acquire the initial 60% N2O+40% 

oxygen versus 100% oxygen discrimination.  Column data shown acquisition days when operant 

training followed cessation of gas exposure as well as days to reacquire the discrimination when 

gas exposure continued throughout the operant session.  # denotes subjects which failed to meet 

acquisition criteria under initial training conditions. 

 

Subject number Acquisition Days 

Training after cessation  

of exposure 

Reacquisition days 

Training under 

concurrent exposure 

1A 138 88 

2A 131 33 

3A 180 33 

4A 145 36 

5A 178 112 

6A 131 23 

7A 192 33 

9A 88 39 

10A 141 36 

11A # 33 

13A # 104 

14A # 65 

1N 117 Deceased 

2N 88 32 

3N 126 Deceased 

4N 130 34 
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Figure 3.  Nitrous oxide substitution concentration effect (upper panel) and operant response rate 

(lower panel) curves in mice re-trained to discriminate 60% nitrous oxide from oxygen following 

10 minutes of exposure and continued exposure through training/ testing.* indicates significant 

(p< 0.05) differences from oxygen control. 
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subjects acquired the discrimination in a mean of 38.2 ( 2.5) training sessions. Figure 4 shows 

the acquisition day of each subject plotted on a step graph.  The shortest number of acquisition 

days was 24 and the most extended was 71 with a median of 34.5 training sessions for all 24 

mice to meet acquisition criteria.  Figure 5 shows the first fixed ratio (FFR) data from the first 71 

training sessions separated by training condition.  Initial FFR choice approximated 50% chance 

levels of discrimination accuracy.  By N2O training session 36, mean group FFR accuracy was 

over 90%.  There was no difference in the speed of acquisition as a function of 60% N2O+40% 

O2 or 100% O2 training conditions. 

Nitrous oxide produced concentration-dependent full substitution for the 60% training 

concentration with an EC50 of 25% (CL 19 – 32%) (Figure 6, upper panel).  Control tests of 

100% O2 and 60 % N2O+40% O2 produced a mean of 2% (1) and 95% (1) N2O, respectively.  

Concentrations of 5% and 10% N2O did not substitute for the training concentration. N2O-lever 

selection was significantly greater than the vehicle condition [F(23,138)=4.07, P<0.05] at 

concentrations of 20% N2O and higher.  Partial substitution for 60% N2O+40% O2 occurred at 

20% and 40% N2O concentrations.  Full substitution occurred at the training concentration as 

well as the 80% N2O exposure concentration.  Nitrous oxide exposure produced a significant 

elevation of operant response rates compared to vehicle at the 20% concentration and a 

significant suppression of operant response rates at the highest 80% test concentration 

[F(23,138)=6.8, P<0.05] (Figure 6, lower panel). 

As a measure of continued discrimination accuracy following initial training, 

approximately two months after acquisition the number of days each mouse was eligible to test 

across 10 consecutive Tuesday and Friday testing opportunities (5 weeks x 2 test sessions/week) 

was tabulated as a percentage (Figure 7).  On any given test day 87.5% or 21 of 24 subjects were 
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eligible to test.  Though individual subjects tested between 40-100% of total testing 

opportunities, the median value was 90%. 

To elucidate the onset kinetics of the stimulus properties of nitrous oxide, exposures of 1, 

3, 7 and 10 minutes to 60% N2O+40% O2 were tested for their ability to substitute for the 10 

minute 60% N2O+40% O2 exposure training condition (Figure 8, upper panel).  Exposure 

durations of 1 and 3 minute produced 23% (±6) and 44% (±8) N2O-appropriate responding,   

respectively.  Seven minutes of exposure produced 93% (±3) N2O-lever responding  Only the 1 

and 3 minute exposure durations resulted in significantly lower N2O-appropriate responding as 

compared with the training exposure duration of 10 minutes [F(20,60)=2.52, P<0.05].  There were 

no meaningful alternations is response rates as a function of exposure duration (Figure 8, lower 

panel). 

To determine if the 10 minute training exposure duration produced the maximal possible 

stimulus effects at a given N2O concentration, substitution tests were performed with 30% N2O 

exposures of both 10 and 20 minutes, as well as the training condition of 60% N2O+40% O2 

exposure for 10 minutes (Table 3).  Extended exposure to 30% N2O for 20 minutes did not 

significantly increase the mean percentage N2O-lever responding compared with that produced 

by 10 minutes of exposure to 30% N2O.  However, both the 10 and 20 minutes exposures to 30% 

N2O occasioned significantly less N2O-appropriate responding than exposure to 60% N2O+40% 

O2 for 10 minutes [F(10,20)=1.57, P<0.05].  Operant response rates following 10 and 20 minutes of 

exposure to 30% N2O were not significantly different from each other but both were slightly but 

significantly greater than response rates after 10 minutes of exposure to 60% N2O+40% O2 

[F(11,22)=2.35, P<0.05]. 

 



www.manaraa.com

59 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 4.  Stepwise acquisition plot showing the day acquisition criteria was met for each of 24 

mice trained to discriminate 60% nitrous oxide + 40% oxygen from 100% oxygen.  Data are 

from animals in which gas exposure was continued for the duration of the operant training 

session.  
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Figure 5.  Learning curves of 24 naïve subjects trained to discriminate the stimulus effects of 

60% nitrous oxide + 40% oxygen (closed circles) from 100% oxygen (open circles). 
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Figure 6.  Nitrous oxide substitution concentration effect (upper panel) and operant response rate 

(lower panel) curves in mice trained to discriminate 10 minutes of exposure to 60% nitrous oxide 

+40% oxygen from oxygen.  Points above O2 and N2O reflect the 60% nitrous oxide + 40% 

oxygen and the 100% oxygen control conditions.  * indicate significant (p< 0.05) differences 

from oxygen control.  
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Figure 7.  Percentage of 10 total Tuesday and Friday test sessions which each of 24 subjects met 

testing eligibility criteria.   
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Figure 8.  Onset of effects.  Mean (±SEM) percentage nitrous oxide lever responding (upper 

panel) and operant response rates (lower panel) produced on varying the duration of 60% nitrous 

oxide +40% oxygen exposure.  * indicates significant (p< 0.05) differences from the 10 minute 

60% nitrous oxide + 40% oxygen exposure condition. 
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Table 3. Percentage N2O lever responding (±SEM) and responses per second (±SEM) produced 

during exposure to training condition of 60% N2O+ 40% oxygen for 10 minutes versus 

exposures to 30% N2O for either 10 or 20 minutes.  * indicates significant (p< 0.05) differences 

from the 10 minutes 60% N2O exposure condition.   

 

 

  

 100% O2 10 

min (±SEM) 

60% N2O 10 min 

(±SEM) 

30 % N2O 10 

min (±SEM) 

30% N2O 20 min 

(±SEM) 

% N2O lever 

responding  

1.3 (0.6) 91.3 (2.5) 40.6 (9.4) * 37.2 (10.3) * 

Responses/sec 1.3 (0.1) 1.1 (0.1) 1.4 (0.1) * 1.5 (0.1) * 
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To assess the offset kinetics of N2O discriminative stimulus the effects increased lengths 

of delays in the start of the operant discrimination session were introduced following a 10 minute 

exposure to 60% N2O+40% O2.  The offset of nitrous oxide’s discriminative stimulus effects 

were rapid (Figure 9).  Beginning the operant test session immediately after cessation of N2O 

exposure (0-minute delay) resulted in 88% (±7) N2O lever responding (Figure 9, upper panel).  

Delaying the start of the session by 1 and 3 minutes resulted in 61% (±12) and 44% (±13) N2O 

lever responding, respectively.  Delaying the start of the test session by 5 minutes diminished 

N2O-appropriate responding to near vehicle levels.  Both 3 and 5 minute delays prior to the start 

of the operant session produced significantly lower N2O-appropriate responding as compared 

with  the 0 minute delay condition [F(12,36)=4.22, P<0.05].   

 

Aim 2:  Cross-substitution between N2O, NMDA antagonists and GABAergic drugs 

Given the in vitro evidence that N2O attenuates NMDA receptor function, three NMDA 

receptor channel blockers of varying affinities were tested for their ability to substitute for 60% 

N2O+40% O2 (Figure 10).  The high affinity NMDA receptor channel blocker (+)-MK-801 

(closed circle) produced a dose-dependent and significant level of partial substitution for 60% 

N2O+40% O2 [F(7,35)=0.98, P<0.05].  The substitution ED50 of (+)-MK-801 for N2O was 0.39 

mg/kg (CL 0.20 - 0.77 mg/kg).  Maximum substitution of 55% (16) was produced by a (+)-

MK-801 dose of 0.75 mg/kg.  (+)-MK-801 dose dependently attenuated operant responding with 

an ED50 of 0.39 mg/kg (CL 0.30 – 0.50 mg/kg) [F(7,42)=1.447, P<0.05].  Significant suppression 

of operant response rates occurred at doses of 0.30 - 0.75 mg/kg of (+)-MK-801.  The moderate 

affinity NMDA receptor channel blocker ketamine (closed squares) also produced dose-

dependent partial substitution for N2O [F(6,18)=0.33, P<0.05].  Ketamine produced a maximum of 
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36% (9) N2O-lever responding at a dose of 15.6 mg/kg.  Ketamine also dose dependently 

attenuated operant responding with an ED50 of 15.3mg/kg (CL 12.4 – 18.8 mg/kg) [F(6,24)=2.21, 

P<0.05].  Significant suppression of responding occurred at ketamine doses of 15.6 mg/kg and 

30 mg/kg.  The low affinity NMDA receptor channel blocker memantine (closed triangles) 

produced dose-dependent partial substitution for 60% N2O+40% O2 [F(6,30)=1.202, P<0.05] up to 

a maximum of 50% (10) at a dose of 56 mg/kg.  Memantine also dose dependently attenuated 

operant responding with an ED50 of 29.2 mg/kg (CL 24.9 – 34.3 mg/kg).  Significant suppression 

of responding occurred at memantine doses of 30 and 56 mg/kg [F(6,30)=3.88, P<0.05]. 

The NMDA receptor glutamate site competitive antagonist CGS-19755 (Figure 11, 

closed circle) did not produce significant substitution for N2O [F(7,21)=3.91, P=0.29].  A 

maximum of 11% (5) N2O-lever responding occurred at a dose of 17 mg/kg.  However, CGS-

19755 did dose dependently attenuate operant responding with an ED50 of 12.0 mg/kg (CL 8.1 – 

17.9 mg/kg).  Significant suppression of responding was produced by CGS-19755 doses of 10 

and 17 mg/kg [F(7,28)=4.59, P<0.05].  The NMDA receptor glycine site antagonist L-701,324 

(Figure 11, closed square) also failed to significantly substitute for N2O [F(7,28)=1.22, P=0.13] 

producing no greater than 1% N2O-lever selection at any dose.  L-701,324 failed to significantly 

attenuate operant responding [F(7,28)=9.28, P=0.44] up to the maximum dose tested of 30 mg/kg. 

To further examine the role of NMDA receptor channel blockade in the discriminative 

stimulus of N2O, I conducted a curve-shift experiment to determine if (+)-MK-801 pretreatment 

would enhance the discriminative stimulus of N2O (Figure 12).  A concentration-effect curve of 

N2O+vehicle was compared to concentration-effect curves of N2O combined with either 0.03 

mg/kg or 0.17 mg/kg (+)-MK-801.  N2O+vehicle (closed circles) produced an EC50 of 32% (CL 

25% – 41%).  Pretreatment with a low dose of 0.03 mg/kg (+)-MK-801 (closed squares)  
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Figure 9.  Offset of effects.  Mean (±SEM) percentage nitrous oxide lever responding (upper 

panel) and operant response rates (lower panel) produced by a delay to the start of the 5 minute 

test session following cessation of 10 minutes of 60% nitrous oxide. Point above O2 reflects the 

100% oxygen control condition.  Point above 0 minutes after exposure reflects the 60% nitrous 

oxide + 40% oxygen control condition. * indicates significant (p< 0.05) differences from N2O 

control. 
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Figure 10.  NMDA receptor channel blocker substitution dose response (upper panel) and 

operant response rate (lower panel) curves in mice trained to discriminate 60% N2O+40% 

oxygen from 100% oxygen.  Points above O2 and N2O reflect the 60% N2O +40% oxygen and 

the 100% oxygen control conditions.  Numbers in parenthesis indicate total number of subjects 

out of those tested which emitted response rates sufficient to be included in that point. * indicates 

significant (p< 0.05) differences from oxygen control. 
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Figure 11.  Glutamate and glycine site NMDA receptor antagonist substitution dose response 

(upper panel) and operant response rate (lower panel) curves in mice trained to 60% N2O+40% 

oxygen from 100% oxygen.  Points above O2 and N2O reflect the 60% N2O +40% oxygen and 

the 100% oxygen control conditions. Numbers in parenthesis indicate total number of subjects 

out of those tested which emitted response rates sufficient to be included in that point. * indicates 

significant (p< 0.05) differences from oxygen control. 
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Figure 12.  Effect of (+)-MK-801 pretreatment on nitrous oxide substitution concentration effect 

(upper panel) and operant response rate (lower panel) curves in mice trained to 60% N2O+40% 

oxygen from 100% oxygen.  Points above O2 and N2O reflect the 60% N2O +40% oxygen and 

the 100% oxygen control conditions.* indicates significant (p< 0.05) differences from N2O + 

vehicle concentration effect curve. 
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produced a leftward shift of the N2O concentration effect curve.  However the EC50 of 26% (CL 

17% – 39%) overlapped with the confidence limits of N2O+vehicle.  A moderate dose of 0.17 

mg/kg (+)-MK-801 (closed triangles) in combination with N2O produced a more pronounced 

1.78 fold leftward shift in the N2O concentration effect curve.  The EC50 of N2O when combined 

with 0.17 mg/kg (+)-MK-801 was 17% (CL 13% – 23%) which did not overlap with the EC50 of 

N2O + vehicle.  Further ANOVA analysis indicated that pretreatment with (+)-MK-801 

significantly enhanced the discriminative stimulus effects of N2O [F(8, 48)=2.46, P<0.05].  

Pretreatment with (+)-MK-801 also significantly enhanced the response-rate suppressing effects 

of N2O [F(10,60)=6.89, P<0.05].  Only N2O combined with the moderate dose of 0.17 mg/kg dose 

of (+)-MK-801 produced concentration-dependent attenuation of operant responding sufficient to 

generate an EC50 which was 43% (CL 24% – 77%) (Figure 12, lower panel). 

To determine if NMDA agonist could antagonize the discriminative stimulus of N2O I 

conducted a series of tests in a subset of mice with the NMDA receptor glycine site co-agonist 

sarcosine.  Sarcosine when administered alone (Figure 13) failed to significantly substitute for 

N2O [F(3, 12)=2.86, P=0.39].  Sarcosine produced a maximum of 25% (25) N2O-lever 

responding at a dose of 300 mg/kg.  Sarcosine also produced no effects on operant responding 

[F(12, 96)=3.91, P=0.47].  Next the concentration effect curve of N2O+vehicle was compared to 

concentration-effect curves of N2O preceded by pretreatment with 300 mg/kg or 600 mg/kg 

sarcosine (Figure 14).  N2O+vehicle (closed circles) produced concentration-dependent full 

substitution for the training concentration with an EC50 of 30% (CL 25% – 37%).  The 300 

mg/kg sarcosine pretreatment (closed squares) produced concentration-dependent full 

substitution for 60% N2O+40% O2 with an EC50 of 30% (CL 25% – 36%).  Pretreatment with  

 



www.manaraa.com

72 

 

 
Figure 13.  Sarcosine substitution dose response (upper panel) and operant response rate (lower 

panel) curves in mice trained to discriminate 60% N2O+40% oxygen from 100% oxygen.  Points 

above O2 and N2O reflect the 60% N2O+40% oxygen and the 100% oxygen control conditions. 
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Figure 14.  Effect of sarcosine pretreatment on nitrous oxide substitution concentration effect 

(upper panel) and operant response rate (lower panel) curves in mice trained to discriminate 60% 

N2O+40% oxygen from 100% oxygen.  Points above O2 and N2O reflect the 60% N2O+40% 

oxygen and the 100% oxygen control conditions. 
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600 mg/kg sarcosine (closed triangles) produced concentration-dependent full substitution for 

60% N2O+40% O2 with an EC50 of 31% (CL 29% – 34%).  The EC50 confidence limits for all 

three concentration-effect curves overlapped indicating that sarcosine does not significantly shift 

the N2O concentration-effect curve under the conditions tested.  Further analysis of variance 

testing confirmed that pretreatment with sarcosine did not significantly alter the discriminative 

stimulus effects of N2O [F(12, 96)=2.12, P=0.91].  Pretreatment with 300 mg/kg sarcosine did not 

have a significant effect on the rates of responding during N2O exposure [F(12, 96)=2.19, P=0.34].  

However, pretreatment with 600 mg/kg dose of sarcosine prior to N2O exposure produced a 

concentration-dependent attenuation of operant responding which was sufficient to generate an 

EC50 of 75% (69% – 82%).   

 To examine the role of GABAA receptors in the discriminative stimulus properties of 

N2O, five GABAergic compounds were tested for the ability to substitute for 60% N2O+40% O2.  

The extrasynaptic GABAA receptor agonist gaboxadol (Figure 15, closed circle) failed to 

produce significant substitution for N2O [F(7,21)=2.59, P=0.27] resulting in a maximum of 4% 

(3) N2O-lever responding at a dose of 1.0 mg/kg.  Gaboxadol attenuated operant responding 

with an ED50 of 6.4 mg/kg (CL 2.6 mg/kg - 15.7 mg/kg).  Significant suppression of responding 

[F(7,28)=5.27, P<0.05] occurred only at the 10.0 mg/kg dose of gaboxadol.  The direct GABAA 

agonist muscimol (Figure 15, closed square) failed to significantly substitute for 60% N2O+40% 

O2 [F(7,21)=1.83, P=0.06] producing a maximum of 22% (22) N2O-lever responding at a dose of 

1.7 mg/kg.  Muscimol produced dose-dependent attenuation of operant response rates with an 

ED50 of 1.2 mg/kg (CL 0.9 - 1.6 mg/kg).  Muscimol significantly suppressed responding at doses 

of 1.7 and 3.0 mg/kg [F(7,28)=2.68, P<0.05].  The GABA transaminase inhibitor valproic acid 

(Figure 15, closed triangle) also failed to elicit significant substitution for N2O [F(7,14)=19.0, 
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P=0.35].  However, valproic acid did produce a maximum of 33% (15) N2O-lever responding 

at a dose of 560 mg/kg.  Valproic acid dose-dependently suppressed operant responding with an 

ED50 of 430 mg/kg (CL 384 mg/kg - 481 mg/kg).  Statistically significant suppression of 

responding [F(7,21)=2.65, P<0.05] was produced by the highest valproic acid test dose of 560 

mg/kg which completely suppressed operant responding in half of the subjects. 

Two GABAA receptor positive allosteric modulators were tested for their ability to 

substitute for 60% N2O+40% O2 (Figure 16).  The GABAA receptor benzodiazepine-site positive 

allosteric modulator midazolam (closed circles) produced a low (27%), but statistically 

significant level of partial substitution for 60% N2O+40% O2 at the highest dose tested of 56 

mg/kg [F(8,48)=1.92, P<0.05].  Midazolam dose dependently attenuated operant responding with 

an ED50 of 10.5 mg/kg (CL 3.2 – 34.8 mg/kg).  Significant suppression of responding occurred at 

midazolam doses of 10 - 56 mg/kg [F(8,48)=4.23, P<0.05].  The GABAA receptor barbiturate-site 

positive allosteric modulator pentobarbital (closed squares) failed to produce significant 

substitution for N2O [F(7,28)=1.91, P=0.17] generating a maximum of 10% (3) N2O-lever 

responding at a dose of 30 mg/kg.  Pentobarbital produced dose-dependent suppression of 

operant responding with an ED50 of 28.9 mg/kg (CL 17 mg/kg – 49 mg/kg).  Statistically 

significant suppression of responding was produced by pentobarbital doses of 30 and 50 mg/kg 

[F(7,35)=2.27, P<0.05]. 

I also conducted a curve-shift experiment to determine if midazolam would enhance the 

discriminative stimulus of N2O.  A concentration effect curve of N2O preceded by vehicle 

pretreatment was compared to concentration-effect curves of N2O preceded by pretreatment with 

0.3, 3 or 10 mg/kg midazolam (Figure 17).  The highest pretreatment dose  
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Figure 15.  GABAA receptor agonist substitution dose response (upper panel) and operant 

response rate (lower panel) curves in mice trained to discriminate 60% N2O+40% oxygen from 

100% oxygen.  Points above O2 and N2O reflect the 60% N2O+40% oxygen and the 100% 

oxygen control conditions.   Numbers in parenthesis indicate total number of subjects out of 

those tested which emitted response rates sufficient to be included in that point.* indicates 

significant (p< 0.05) differences from oxygen control. 
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Figure 16.  GABAA receptor positive allosteric modulator substitution dose response (upper 

panel) and operant response rate (lower panel) curves in mice trained to discriminate 60% 

N2O+40% oxygen from 100% oxygen.  Points above O2 and N2O reflect the 60% N2O+40% 

oxygen and the 100% oxygen control conditions. Numbers in parenthesis indicate total number 

of subjects out of those tested which emitted response rates sufficient to be included in that 

point.* indicates significant (p< 0.05) differences from oxygen control. 
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Figure 17.  Effect of midazolam pretreatment on nitrous oxide substitution concentration effect 

(upper panel) and operant response rate (lower panel) curves in mice trained to discriminate 60% 

N2O+40% oxygen from 100% oxygen.  Points above O2 and N2O reflect the 60% N2O+40% 

oxygen and the 100% oxygen control conditions.   Numbers in parenthesis indicate total number 

of subjects out of those tested which emitted response rates sufficient to be included in that 

point.* indicates significant (p< 0.05) differences of N2O + 3 mg/kg midazolam concentration 

effect curve from N2O + vehicle concentration effect curve.  
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of 10 mg/kg midazolam was the minimum dose of midazolam which produced significant 

suppression of response rates when administered alone.  N2O+vehicle (closed circles) produced 

concentration-dependent full substitution for the 60% N2O+40% O2 training concentration with 

an EC50 of 25 % (CL 14% – 44%).  Nitrous oxide combined with a low dose of 0.3 mg/kg 

midazolam (closed squares) produced concentration-dependent full substitution for the 60% 

N2O+40% O2 training condition with an EC50 of 35% (CL 25% – 47%).  Nitrous oxide combined 

with 3.0 mg/kg midazolam (closed triangles) produced concentration-dependent full substitution 

for 60% N2O+40% O2 with an EC50 of 44% (CL 35% – 56%).  Nitrous oxide combined with 10 

mg/kg midazolam produced concentration-dependent partial substitution for 60% N2O+40% O2.   

Although midazolam pretreatment dose dependently shifted the N2O concentration rightward, 

the ED50 confidence limits all overlapped.  Further statistical analysis by ANOVA indicated that 

pretreatment with midazolam did not significantly affect the discriminative stimulus effects of 

N2O [F(10, 70)=0.63, P=0.78].  Pretreatment with midazolam did, however, significantly enhance 

the response-rate suppressing effects of N2O [F(12, 84)=5.56, P<0.05].  N2O preceded by 

pretreatment with 3 mg/kg midazolam produced a concentration-dependent attenuation of 

operant responding with an EC50 of 22% (18% – 27%).  N2O combined with 10.0 mg/kg 

midazolam produced such pronounced suppression of operant responding at the lowest 

combination dose tested that an EC50 value could not be calculated. 

 

 

Aim 3: Cross-substitution between N2O and other abused inhalants 

 It was of interest to determine the degree to which the discriminative stimulus effects of 

nitrous oxide overlapped with those of other abused inhalants.  Two halogenated ether 
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anesthetic vapors were tested for their ability to substitute for 60% N2O+40% O2 (Figure 18).  

The volatile halogenated anesthetic isoflurane (closed circles) produced a concentration-

dependent and significant level of partial substitution for N2O [F(7,21)=2.91, P<0.05].  Maximum 

substitution of 39% (11) was produced by 4000 ppm isoflurane.  Isoflurane also produced a 

concentration-dependent attenuation of operant responding with an EC50 of 3803 ppm (CL 

3218–4496 ppm).  Significant suppression of operant responding occurred at isoflurane 

concentrations of 4000 ppm and 6000 ppm [F(7,28)=4.814, P<0.05].  The volatile halogenated 

analgesic methoxyflurane (closed squares) produced a concentration-dependent and significant 

level of partial substitution for N2O [F(8,24)=2.59, P<0.05].  Maximum substitution of 47% 

(14.2) N2O-lever selection was produced by 2000 ppm methoxyflurane.  Methoxyflurane also 

concentration-dependently attenuated operant responding with an EC50 of 1902 ppm (CL 1563 

ppm – 2316 ppm).  Significant suppression of operant responding was produced by 4000 ppm 

and 6000 ppm methoxyflurane [F(8,32)=1.685, P<0.05]. 

Two abused vapors were also tested for their ability to substitute for N2O (Figure 19).  

The chlorinated hydrocarbon vapor 1,1,1-trichloroethane (TCE) (closed circles), produced a 

concentration-dependent and significant level of partial substitution for nitrous oxide 

[F(7,28)=1.76, P<0.05].  Maximum substitution of 44% (18) N2O-lever responding was 

produced by 12000 ppm TCE.  TCE also resulted in a concentration-dependent attenuation of 

operant responding with an EC50 of 8264 ppm (CL 7295 ppm – 9361 ppm) [F(7,28)=6.243, 

P<0.05].  Significant suppression of operant responding occurred at the highest tested 

concentration of 12000 ppm TCE.  The aromatic hydrocarbon vapor toluene (closed squares) 

produced a concentration-dependent and significant level of partial substitution for N2O 

[F(7,28)=0.82, P<0.05]  with an EC50 of 3174 ppm (CL 1970 ppm – 5117 ppm).  Maximum  
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substitution of 72% (10) N2O-lever selection was produced by 8000 ppm toluene.  Toluene 

concentration dependently attenuated operant responding with an EC50 of 5192 ppm (CL 

4509ppm – 5977 ppm) [F(7,35)=8.85, P<0.05]. Toluene concentrations of 2000, 4000 and 8000 

ppm significant suppressed operant responding.   

As all of the volatile compounds produced some degree of substitution for 60% 

N2O+40% O2, I also examined if a strong odor cue devoid of CNS properties was sufficient to 

elicit N2O-like stimulus effects (Figure 20).  The sweet smelling odorant 2-butanol failed to 

significantly substitute for N2O [F(7,21)=26.74, P=0.43] producing no greater than 3% N2O-

lever selection at any concentration tested.  The odorant also failed to significantly attenuate 

operant response rates [F(7,21)=28.79, P=0.78] up to the maximum concentration tested of 100 

ppm. 
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Figure 18.  Halogenated vapor anesthetic substitution concentration effect (upper panel) and 

operant response rate (lower panel) curves in mice trained to discriminate 60% N2O+40% 

oxygen from 100% oxygen.  Points above O2 and N2O reflect the 60% N2O+40% oxygen and the 

100% oxygen control conditions.   Numbers in parenthesis indicate total number of subjects out 

of those tested which emitted response rates sufficient to be included in that point.* indicates 

significant (p< 0.05) differences from air control. 
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Figure 19.  Abused inhalant vapor substitution concentration effect (upper panel) and operant 

response rate (lower panel) curves in mice trained to discriminate 60% N2O+40% oxygen from 

100% oxygen.  Points above O2 and N2O reflect the 60% N2O+40% oxygen and the 100% 

oxygen control conditions.   Numbers in parenthesis indicate total number of subjects out of 

those tested which emitted response rates sufficient to be included in that point.  * indicates 

significant (p< 0.05) differences from air control. 



www.manaraa.com

84 

 

 
 

Figure 20.  Odorant 2-butanol substitution concentration effect (upper panel) and operant 

response rate (lower panel) curves in mice trained to discriminate 60% N2O+40% oxygen from 

100% oxygen.  Points above O2 and N2O reflect the 60% N2O+40% oxygen and the 100% 

oxygen control conditions. 
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Aim 4: Other potential mediators of the stimulus effects of N2O 

The discriminative stimulus effects of ethanol are mediated by both GABAA positive and 

NMDA antagonist effects (York, 1978, Grant, Waters, Green-Jordan, Azarov, & Szeliga, 2000, 

Kotlinska & Liljequist, 1997, Shelton & Grant, 2002).  Therefore I also determined the degree to 

which the stimulus effects of ethanol overlap with those of nitrous oxide.  Ethanol (Figure 21) 

produced partial substitution for N2O up to a maximum of 45% (12) at the highest test dose of 

2.5 g/kg.  Statistically significant substitution by ethanol for N2O was produced by ethanol doses 

of 2 and 2.5 g/kg [F(14,56)=3.30, P<0.05].  Ethanol also dose-dependently attenuated operant 

response rates with an ED50 of 2.23 g/kg (CL 1.97 g/kg– 2.73 g/kg).  Ethanol significantly 

suppressed operant responding at doses of 1.5 g/kg – 2.5 g/kg [F(14,56)=3.05, P<0.05]. 

To further examine if the discriminative stimulus properties of N2O and ethanol are 

mediated by similar mechanism, I conducted a curve shift experiment to determine if ethanol 

would enhance the discriminative stimulus of nitrous oxide (Figure 22).  The concentration-

effect curve of N2O+vehicle was compared to concentration-effect curves of N2O preceded by 

pretreatment with 0.5 g/kg or 1.5 g/kg ethanol.  N2O+vehicle (closed circles) produced 

concentration-dependent full substitution for the 60% N2O+40% O2 with an EC50 of 31% (CL 

27% – 36%).  Nitrous oxide preceded by pretreatment with a low dose of 0.5 g/kg ethanol 

(closed squares) produced concentration-dependent full substitution for 60% N2O+40% O2 with 

an EC50 of 27% (CL 23% – 32%).  Nitrous oxide preceded by pretreatment with a higher dose of 

1.5 g/kg ethanol (closed triangles) produced a 2.84 fold leftward shift in the N2O concentration 

effect curve and an EC50 of 11% (CL 7% – 18%) which did not overlap with the EC50 of 

N2O+vehicle.  Further analysis of variance indicated that pretreatment with 1.5 g/kg ethanol 

significantly enhanced the discriminative stimulus effects of nitrous oxide [F(8,56)=4.43, P<0.05].   
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Figure 21.  Ethanol substitution dose response (upper panel) and operant response rate (lower 

panel) curves in mice trained to discriminate 60% N2O+40% oxygen from 100% oxygen.  Points 

above O2 and N2O reflect the 60% N2O+40% oxygen and the 100% oxygen control conditions.  

Numbers in parenthesis indicate total number of subjects out of those tested which emitted  

response rates sufficient to be included in that point.* indicates significant (p< 0.05) differences 

from oxygen control.  
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Figure 22.  Effect of ethanol pretreatment on N2O substitution concentration effect (upper panel) 

and operant response rate (lower panel) curves in mice trained to discriminate 60% N2O+40% 

oxygen from 100% oxygen.  Points above O2 and N2O reflect the 60% N2O+40% oxygen and the 

100% oxygen control conditions. * indicates significant (p< 0.05) differences from N2O + 

vehicle concentration effect curve through 60% N2O.  
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Ethanol pretreatment also enhanced the response rate suppressing effects of N2O [F(10,70)=6.62, 

P<0.05].  Pretreatment with 0.5 g/kg ethanol produced a significant concentration-dependent 

attenuation of operant response rates.  The 1.5 g/kg ethanol pretreatment produced a more 

pronounced concentration-dependent attenuation of operant responding with an EC50 of 24% (CL 

17% – 36%) and full suppression  of operant responding in the 1.5 g/kg ethanol+60% N2O test 

condition. 

The discriminative stimulus effects of ethanol are mimicked not only GABAA positive 

modulators and NMDA antagonists but also 5-HT1B/2C agonists (Grant, Colombo, & Gatto, 

1997).  To examine the possibility that the partial substitution of ethanol for nitrous oxide was 

mediated by 5-HT1B/2C receptors I examined if a 5-HT1B/2C receptor agonist, mCPP, which 

substitutes for ethanol, would have N2O-like discriminative stimulus effects.  mCPP (Figure 23) 

failed to significantly substitute for nitrous oxide [F(7,21)=56.6, P=0.053].  mCPP produced a 

maximum of 21% (17) N2O-lever responding at 10 mg/kg, a dose which also fully suppressed 

operant responding in three of eight subjects.  mCPP dose-dependently attenuated operant 

responding with an ED50 of 3.7 mg/kg (CL 2.2 mg/kg – 6.5 mg/kg).  Significant suppression of 

operant responding was produced by mCPP doses of 5.6 mg/kg and 10 mg/kg [F(7,28)=4.14, 

P<0.05]. 

Nitrous oxide produces increased human subjective ratings on the LSD subscale of the 

ARCI questionnaire (Dohrn et al., 1993).  To examine if these similarities were due to 5HT1A 

agonist effects, I examined if the 5HT1A agonist 8-OH DPAT would produce N2O-like 

discriminative stimulus effects.  8-OH DPAT (Figure 24) failed to significantly substitute for 

N2O [F(7,28)=7.98, P=0.20] producing no greater than 4% N2O-lever selection at any dose.  8-OH 

DPAT dose dependently attenuated operant responding with an ED50 of 0.5 mg/kg (CL 0.38 
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mg/kg – 0.71 mg/kg).  8-OH DPAT significantly suppressed operant responding at doses of 0.3 - 

1.56 mg/kg [F(7,28)=2.38, P<0.05]. 

It has been shown that toluene vapor will substitute for D-amphetamine (Bowen, 2006).  

Given the high level of partial substitution of toluene for N2O, this might suggest that facilitation 

of dopamine release is involved in the discriminative stimulus effects of N2O  D-Amphetamine 

(Figure 25) failed to significantly substitute for N2O [F(6,24)=1.29, P=0.36].  D-Amphetamine 

produced no greater than 1% N2O-lever selection at any dose.  D-Amphetamine also failed to 

significantly attenuate operant responding [F(6,24)=8.89, P=0.30] up to the maximum dose tested 

of 1.56 mg/kg. 

Nitrous oxide has been shown to produce cross-substitution in rats trained to discriminate 

a kappa but not a mu opioid receptor agonist (Hynes & Hymson, 1984).  I tested a mu, kappa and 

delta opioid receptor agonist for their ability to substitute for 60% N2O+40% O2 (Figure 26).  

The mu opioid receptor agonist morphine (closed circles) produced a partial, but not statistically 

significant level of substitution for N2O [F(7,28)=1.58, P=0.35].  A maximum of 33% (33) N2O-

lever responding was produced at the highest morphine test dose of 30 mg/kg, a dose which also 

fully suppressed operant responding in 5 of 8 subjects.  Morphine produced dose-dependent 

attenuation of operant responding with an ED50 of 7.9 mg/kg (CL 3.9 mg/kg - 16.2 mg/kg).  

Significant suppression of responding occurred at the 10 and 30 mg/kg morphine doses 

[F(7,35)=6.29, P<0.05].  The kappa opioid receptor agonist U50-488H (closed squares) did not 

significantly substitute for N2O [F(7,14)=6.41, P=0.66].  U50-488H produced a maximum of 11% 

(11) N2O-lever responding at a dose of 7 mg/kg.  U50-488H dose dependently attenuated 

operant responding with an ED50 of 3.3 mg/kg (CL 2.7 mg/kg– 4.1 mg/kg).  Significant 

suppression of  
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Figure 23.  mCPP substitution dose response (upper panel) and operant response rate (lower 

panel) curves in mice trained to discriminate 60% N2O+40% oxygen from 100% oxygen.  Points 

above O2 and N2O reflect the 60% N2O+40% oxygen and the 100% oxygen control conditions.  

Numbers in parenthesis indicate total number of subjects out of those tested which emitted 

response rates sufficient to be included in that point.* indicates significant (p< 0.05) differences 

from oxygen control. 
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Figure 24.  8-OH DPAT substitution dose response (upper panel) and operant response rate 

(lower panel) curves in mice trained to discriminate 60% N2O+40% oxygen from 100% oxygen.  

Points above O2 and N2O reflect the 60% N2O+40% oxygen and the 100% oxygen control 

conditions.  * indicates significant (p< 0.05) differences from oxygen control 
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Figure 25.  D-amphetamine dose response (upper panel) and operant response rate (lower panel) 

curves in mice trained to discriminate 60% N2O+40% oxygen from 100% oxygen.  Points above 

O2 and N2O reflect the 60% N2O+40% oxygen and the 100% oxygen control conditions. 
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Figure 26.  Opioid receptor agonist substitution dose response (upper panel) and operant 

response rate (lower panel) curves in mice trained to discriminate 60% N2O+40% oxygen from 

100% oxygen.  Points above O2 and N2O reflect the 60% N2O+40% oxygen and the 100% 

oxygen control conditions.  Numbers in parenthesis indicate total number of subjects out of those 

tested which emitted response rates sufficient to be included in that point.* indicates significant 

(p< 0.05) differences from oxygen control. 
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operant responding [F(7,28)=1.97, P<0.05] occurred at U-50488H doses of 1, 7 and 10 mg/kg.  

Lastly, the delta opioid receptor agonist SNC-80 (closed triangles) did not produce greater than 

10% N2O-lever responding at any dose tested.  However due to the low level of variability, doses 

of both 10 mg/kg and 30 mg/kg SNC-80 resulted in significantly greater, but probably not 

meaningful higher, levels of N2O-lever responding than vehicle [F(7,42)=4.37, P<0.05].  SNC-80 

produced a dose-dependent attenuation of operant responding with an ED50 of 28.6 mg/kg (CL 

16.8 mg/kg – 48.6 mg/kg).  Significant suppression of responding occurred at SNC-80 doses of 

10 - 56 mg/kg [F(7,49)=3.51, P<0.05]. 

There is limited evidence that nicotinic acetylcholine receptors may underlie some of the 

in vitro effects of nitrous oxide (Suzuki,et al., 2003, Yamakura & Harris, 2000).  The nicotinic 

acetylcholine receptor agonist nicotine (Figure 27) failed to significantly substitute for N2O 

[F(6,24)=1.69, P=0.19] producing no greater than 1% N2O-lever selection at any dose.  Nicotine 

dose dependently attenuated operant responding with an ED50 of 1.1 mg/kg (CL 0.78 mg/kg – 1.7 

mg/kg).  Nicotine significantly suppressed operant responding at doses of 1.7 and 2.5 mg/kg 

[F(6,30)=2.19, P<0.05]. 

To completely exclude the possibility that N2O has interactions at nicotinic acetylcholine 

receptors I tested if a behaviorally active dose of nicotine could shift the nitrous oxide 

concentration effect curve (Figure 28).  N2O+vehicle (closed circles) produced concentration-

dependent full substitution for the 60% training with an EC50 of 35% (CL 27% – 44%).  

Pretreatment with 1.0 mg/kg nicotine produced no significant alteration [F(6,36)=0.35, P=0.91]   

in the N2O concentration effect curve (closed squares) resulting in an almost identical EC50 of 

36% (CL 27% – 48%).  Neither N2O+vehicle nor 1.0 mg/kg nicotine+ N2O significantly 

attenuated operant response rates [F(6,36)=0.40, P=0.87]. 
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Figure 27.  Nicotine substitution dose response (upper panel) and operant response rate (lower 

panel) curves in mice trained to discriminate 60% N2O+40% oxygen from 100% oxygen.  Points 

above O2 and N2O reflect the 60% N2O+40% oxygen and the 100% oxygen control conditions.  

Numbers in parenthesis indicate total number of subjects out of those tested which emitted 

response rates sufficient to be included in that point.* indicates significant (p< 0.05) differences 

from oxygen control.  
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Figure 28.  Effect of 1.0 mg/kg nicotine on nitrous oxide substitution concentration effect (upper 

panel) and operant response rate (lower panel) curves in mice trained to discriminate 60% 

N2O+40% oxygen from 100% oxygen.  Points above O2 and N2O reflect the 60% N2O+40% 

oxygen and the 100% oxygen control conditions. 
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Studies have shown that neuronal nitric oxide synthase (nNOS) enzymes may play a role 

in N2O anxiolysis [review see (Emmanouil & Quock, 2007)].  The nNOS inhibitor L-NAME 

(Figure 29) failed to substitute for N2O [F(3,9)=1.73, P=0.49] producing no greater than 2% N2O 

lever selection at any dose.  L-NAME did not significantly reduce operant response rates 

[F(3,9)=2.85, P=0.49].  To explore if nNOS inhibition plays any role in the discriminative 

stimulus of N2O I also conducted a curve-shift experiment to determine if L-NAME would 

antagonize the discriminative stimulus of N2O (Figure 30).  N2O+vehicle (closed circles) 

produced a concentration-dependent full substitution for the 60% N2O training concentration 

with an EC50 of 31% (CL 25% – 37%).  Nitrous oxide preceded by pretreatment with 30 mg/kg 

L-NAME (closed squares) produced concentration-dependent full substitution for 60% N2O with 

an EC50 of 35% (CL 32% - 39%) and did not significantly shift the nitrous oxide concentration 

effect curve [F(6,42)=0.25, P=0.95].  No dose of N2O alone attenuated operant responding by 

more than 25% of the O2 control response rate.  However, pretreatment with 30 mg/kg L-NAME 

prior to N2O exposure produced a significant [F(6, 42)=7.34, P<0.05] and concentration-dependent 

attenuation of operant responding sufficient to generate an EC50 of 73% (CL 61% - 86%). 

As a final series of experiments, after sixteen months of training and testing, a full N2O 

concentration-effect curve was reassessed to determine if tolerance or sensitization has occurred 

as a result of daily training and testing (Figure 31). The initial N2O concentration-effect curve 

had resulted in an EC50 was 25% (CL 19% – 32%).  The N2O substitution curve from month 

sixteen (closed squares) resulted in an EC50 of 25% (CL 20% – 32%).  A two way ANOVA 

revealed a significant main effect of N2O concentration but there was no significance test date 

effect and no significant interaction [F(6,138)=3.06, P=0.11] showing that tolerance did not 

develop to nitrous oxide’s discriminative stimulus effects.  There was, however, a significant 
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increase in operant response rates between the initial concentration-effect curve and the 

concentration-effect curve generated in month sixteen [F(6,138)=0.98, P<0.05]. 
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Figure 29.  L-NAME substitution dose response (upper panel) and operant response rate (lower 

panel) curves in mice trained to discriminate 60% N2O+40% oxygen from 100% oxygen.  Points 

above O2 and N2O reflect the 60% N2O+40% oxygen and the 100% oxygen control conditions. 
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Figure 30.  Effect of 30.0 mg/kg L-NAME on nitrous oxide substitution concentration effect 

(upper panel) and operant response rate (lower panel) curves in mice trained to discriminate 60% 

N2O+40% oxygen from 100% oxygen.  Points above O2 and N2O reflect the 60% N2O+40% 

oxygen and the 100% oxygen control conditions.* indicates significant (p< 0.05) differences 

from N2O + vehicle concentration effect curve.  
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Figure 31. Nitrous oxide substitution concentration effect (upper panel) and operant response 

rate (lower panel) curves generated approximately one month after acquisition and after sixteen 

months of training and testing.    
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Table 4.  Inhalant exposure chamber concentrations and t99 calculations for the 26.0-L dual 

purpose exposure chamber. Applicable to N=16 subjects.   

 

 

 

  

Desired 

concentration 

(%) 

N2O 

Scale 

Q (LPM) 

O2 

Scale 

Q (LPM) 

V 

(L) 

Q total 

(LPM) 

Concentration 

Start      End 

(%)       (%) 

t99 

(min) 

5 5 0.32 72 7.27 25.96 7.59 0.04 0.04 15.73 

10 8 0.60 72 7.27 25.96 7.87 0.07 0.08 15.17 

20 10 0.79 40 3.69 25.96 4.48 0.14 0.16 26.64 

40 20 1.75 30 2.61 25.96 4.36 0.33 0.37 27.41 

60 30 2.72 20 1.58 25.96 4.30 0.51 0.58 27.80 

80 40 3.70 10 0.63 25.96 4.33 0.69 0.78 27.58 
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Table 5.  Inhalant exposure chamber concentrations and t99 calculations for the 26.0-L dual 

purpose exposure chamber after optimization.  Applicable to N=24 subjects. 

 

Desired 

concentration 

(%) 

N2O 

Scale 

Q (LPM) 

O2 

Scale 

Q (LPM) 

V 

(L) 

Q total 

(LPM) 

Concentration 

Start      End 

(%)       (%) 

t99 

(min) 

5 5 0.32 150 4.58 25.96 4.90 0.06 0.06 24.37 

10 8 0.6 146 4.52 25.96 5.12 0.10 0.11 23.33 

20 14 1.17 105 3.61 25.96 4.78 0.21 0.23 24.99 

40 30 2.72 97 3.39 25.96 6.11 0.40 0.43 19.56 

60 42 3.89 50 1.92 25.96 5.81 0.60 0.65 20.56 

   80 73 6.93 44 1.71 25.96 8.64 0.77 0.80 13.82 
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Discussion 

 

Aim 1 

Establishing a discrimination based on N2O  

 My first aim was to train a N2O discrimination in mice.  Nitrous oxide also produces 

abuse-related subjective effects in humans (Beckman, Zacny, & Walker, 2006, Walker & Zacny, 

2001, 2002, Zacny et al., 1994).  Previous studies have also demonstrated that abused volatile 

vapors can serve as discriminative stimuli in rodents either when administered by injection or 

inhalation (Knisely, Rees, & Balster, 1990, Rees, Knisely, Jordan, & Balster, 1987, Shelton, 

2007, 2009, 2010, Shelton & Nicholson, 2010, 2012, Shelton & Slavova-Hernandez, 2009). In 

the same respect I expected that, provided suitable training conditions were established, an 

inhaled N2O gas discrimination could be trained in mice. 

Given that nitrous oxide has never been trained as a discriminative stimulus in rodents, 

developing suitable training conditions was an important consideration.  As with any drug 

discrimination assay the training concentration needed to be salient enough to produce 

discriminable CNS effects.  Human data provided the most insight on appropriate conditions.  In 

a choice study, human subjects chose 20% N2O versus placebo in less than 25% of trials (Dohrn 

et al., 1993).  In contrast, after 20 minutes of nitrous oxide exposure, ratings of both “high” and 

euphoria were significantly greater than vehicle ratings at a concentration of 30% N2O but not 

15% N2O (Beckman, Zacny, & Walker, 2006).  Further, 40% but not lower N2O concentrations 

increased morphine-benzedrine group (MBG) ARCI ratings significantly above baseline in 

human volunteers (Dohrn et al., 1992).  Based on these investigations of human subjective 

effects N2O I hypothesized that concentrations above 40% should be both discriminable in mice 
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as well as within the range of those which produce abuse-related effects in humans.  A 10 minute 

N2O exposure duration was chosen as the training exposure duration based on human choice 

paradigms which utilized a 10 minute sampling inhalation period prior to permitting subjects to 

choose N2O or placebo (Walker & Zacny, 2001, Zacny, Walker, & Derus, 2008).  In these 

studies subjective effects were reported as soon as 5 minutes into the 10 minute exposure (Zacny, 

Walker, & Derus, 2008).  I believed that facilitation of training in mice would be improved by 

using concentrations and exposure times which exceeded the minimums that demonstrated 

effects in humans.  Therefore, in the present study B6SJLF1/J mice were trained to discriminate 

10 minutes of inhaled 60% N2O+40% O2 gas mixture from 10 minutes of exposure to 100% O2. 

Nitrous oxide is generally inhaled alone when abused.  However, extended exposure such 

as that in the above mentioned studies or when utilized in clinical practice necessitates the 

addition of oxygen to prevent hypoxia.  For simplicity, in the present study 100% oxygen rather 

than a variable nitrogen/oxygen mixture was used to dilute N2O and 100% oxygen was chosen as 

the vehicle condition.  These choices bear some discussion as it is possible that if 100% oxygen 

itself has stimulus effect what might have been trained in the present study was a drug versus 

drug rather than a drug versus vehicle discrimination.  Although drug versus drug 

discriminations have been successfully trained the interpretation of cross-substitution results 

becomes more complex (Overton, 1982, Overton et al., 1989).  However, when compared with 

air, 100% oxygen does not appear to affect mood or psychomotor performance (Dohrn et al., 

1992).  Further, oxygen as a vehicle to nitrous oxide is not unprecedented (Quock, Emmanouil, 

Vaughn, & Pruhs, 1992) and no other studies have noted confounds related to using an oxygen 

vehicle (Dohrn et al., 1992, Dohrn et al., 1993, Zacny et al., 1994, Walker and Zacny, 2003, 

Kangas and Walker, 2008).  In the present series of studies, air was used as a control for 
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experiments in which volatile compounds were administered and it produced exclusively 

oxygen-lever responding.  Therefore it was likely that under the present training conditions, the 

stimulus effects of oxygen were negligible. 

The discriminative stimulus effects of solvent and anesthetic vapors have been 

successfully trained in our laboratory (Shelton, 2007, 2009, 2010, Shelton & Nicholson, 2010, 

2012, Shelton & Slavova-Hernandez, 2009).  In each of these studies the subjects were exposed 

to the training inhalant and then removed from the exposure chamber for testing.  These studies 

demonstrated that the stimulus effects of other inhalants were short but training was generally 

not problematic (Shelton, 2007, 2009, Shelton & Nicholson, 2010).  The primary manifestation 

of the dissipation of the behavioral effects of the training inhalants was an underestimation of the 

potency of these compounds for suppressing operant behavior.  In these studies, the authors only 

examined the first minute of behavior during each 5-minute test sessions in order to compensate 

for any loss of potency of the training inhalant over the course of the test session. 

Since these methods were previously successful in my first study, I mimicked these prior 

inhalant discrimination training conditions.  Subjects were exposed to 60% N2O+40% O2 or 

100% O2 for 10 minutes.  They were then removed from the exposure chamber and trained in 

standard operant chambers in room air.  Applying this approach it required a mean of 137.3 

(8.8) training sessions (88-192 range) to reach acquisition criteria of >80% total responses on 

appropriate lever and correct FFR in 8 of 10 training sessions (Figure 1).  This was well beyond 

the number of training sessions required for other inhalants such toluene and TCE which were 

trained in our laboratory in a mean of 26 (2.8) and 27 (1.8) training sessions, respectively 

(Shelton, 2007, 2009).   However, studies reporting the acquisition of other discriminative 

stimuli requiring an excess of 75 training sessions are not unprecedented.  For instance, in rats 
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trained to discriminate 2 hours food restriction from 22 hours food restriction the hunger cue 

versus satiety cue required 82 training sessions (Jewett et al., 2009).  There were several possible 

reasons the initial nitrous oxide versus oxygen discrimination acquisition was so lengthy.  First, 

long acquisition periods of drugs active in the CNS may be attributed to a weakly discriminable 

training dose (Overton, 1982).  The problem can often be overcome by increasing the training 

dose of a drug (Willetts & Balster, 1989).  Further the maximum concentration of N2O which 

does not produce hypoxia, even when diluted in 100% oxygen, is approximately 79%.  

Therefore, if 60% N2O is simply weakly discriminable in mice it would have been difficult to 

take corrective action.  Other possible reasons for the lengthy training could have been an overly 

strict training criteria which seems unlikely given the criteria were identical to that used in a 

number of other inhalant drug discrimination studies in the laboratory (Shelton, 2007, 2009, 

Shelton & Nicholson, 2010).  Lastly, it might have been that N2O disrupted cognitive 

performance to such as extent that the discrimination could not be established.  This too seemed 

unlikely given data showing the drugs which have demonstrated memory impairing effects such 

as the uncompetitive NMDA antagonist (+)-MK-801 could be trained in mice in a mean of 50 

training session (Shelton & Balster, 2004). 

In aggregate the data suggested that the most likely reason for the extended acquisition 

was that the stimulus effects of N2O were so short that even a very brief 5-minute training 

session which was conducted after the cessation of exposure still resulted in excessive 

diminution of stimulus effects and poor stimulus control.  This conclusion is supported by the 

N2O generalization curve collected under these conditions.  Specifically, the training 

concentration of 60% N2O failed to fully substitute for itself (Figure 2).  It required an even 

higher concentration of 66% N2O to fully substitute for the 60% training concentration.  Further, 
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the discriminative reliability of the subjects was also quite poor resulting in few testing 

opportunities even after the acquisition criteria had been reached.  I subsequently examined the 

hypothesis that the stimulus effects of nitrous oxide were simply too brief to train effectively 

under conditions used for other inhalants by revising our exposure/test apparatus and training 

new subjects. 

 

Development and optimization of dynamic exposure/test apparatus 

The revised apparatus consisted of four standard two lever mouse operant chambers 

housed inside individual acrylic exposure cubicles.  This new system allowed continuous 

inhalant exposure through discrimination training and subsequent generalization testing.  The 

development of a new dynamic system posed several additional challenges relative to the 

previous exposure apparatus.  The most pertinent of which were chamber dynamics at different 

gas concentrations and flow rates.  In volatile vapor and solvent discriminations conducted 

previously a fixed volume of volatile liquid was injected and circulated within a static exposure 

chamber.  This permitted exposure concentrations to be calculated using the ideal gas law.  It 

also allowed chamber concentrations to be achieved rapidly as the inhalant vapor was simply 

diluted and dispersed within the static chamber atmosphere rather than the existing atmosphere 

having to be displaced by a test atmosphere.  In a dynamic system the rise in chamber 

concentration over time and the point at which a steady state concentration is achieved become 

additional critical parameters.  Since the internal volume in the revised continuous exposure/test 

apparatus was more than double that of the smaller exposure chamber used in the initial 

experiment it was necessary to calculate and adjust the flow rate such that the chamber 
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concentration was at the target training concentration of 60% for as long as possible prior to the 

start of the operant session. 

Appendix 3 shows the application of equations which were used to model the exposure 

chamber concentration (C) at any time and the time required for the chamber to reach 99% 

steady state (t99) in an open circuit dynamic exposure system (Cheng et al., 2010).  The t99 can be 

mathematically determined when the volume of the chamber and total flow rate of gases are 

available.  The estimated chamber concentration at any point during exposure can be 

approximated if the initial concentration, chamber volume, flow rate and flow time are known.  

In the smaller 9.9 liter exposure apparatus employed in initial training fixed proportional flow 

rates of N2O and O2 (60% or a 6:4 ratio) were used with the assumption being the exposure 

chamber would rapidly equilibrate at a steady state 60% N2O training concentration.  I later 

determined using the application of the above summarized formulas that this was an incorrect 

assumption and the 60% N2O training concentration was reached only at the end of the training 

exposure period.  When the same mice were retrained in the larger combined exposure/operant 

test chamber the usage of same proportional flow rates yielded an exposure concentration which 

never reached the target 60% N2O concentration (Table 4).  Therefore it was also possible that 

the previously extended training may have been exacerbated by insufficient exposure 

concentrations and durations.  To alleviate this problem in the subsequent groups of mice trained 

exclusively in the combination exposure/operant test chamber and used for the bulk of the 

reported experiments, I increased gas flow rates to insure that the chamber concentration reached 

60% N2O prior to the start of the operant session (Table 5). 

While these mathematical calculations provide expected values at differing flow rates I 

believed it was essential to develop an empirical method to confirm they were in fact accurate in 
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my system.  This was especially important given the highest test concentration of 80% N2O 

would have produced hypoxia if the calculations overestimated the amount of oxygen available 

during 80% N2O testing.  Although specialized equipment can be used to directly measure N2O 

concentrations that equipment was unavailable for the present series of studies.  Therefore I 

chose to indirectly test N2O concentration by monitoring oxygen concentrations during a mock 

80% N2O exposure using an inexpensive personal wearable safety oximeter (model PGM-1100; 

ToxiRAE, San Jose, CA, USA).  Appendix 5 shows a plot of oxygen levels for an 80% mock test 

session using concentrations which were employed prior to flow rate optimization.  Since the 

chamber was initially filled with air rather than 100% oxygen at the start of the session the 

oximeter revealed that the mice would have been exposed to hypoxic conditions as early as the 

third minute of exposure if the proportion of gas flows were not adjusted.  I therefore altered the 

gas flow rates to insure that available oxygen levels never fell below 20% during the actual 80% 

N2O exposure test sessions (Appendix 6). 

Following the studies to optimize the revised exposure/test apparatus new mice were 

obtained and were trained under conditions in which the animals continued to be exposed to N2O 

during discrimination training.  The results confirmed my hypothesis that the most likely cause 

of the prior extended training was the rapid diminution of stimulus effect of N2O following the 

cessation of exposure.  Specifically the new system and exposure regimen resulted in a dramatic 

reduction in the number of days required for subjects to meet the acquisition criteria.  When gas 

exposure continued for the duration of the operant training sessions the naïve subjects acquired 

the 60% N2O+40% O2 discrimination in a mean of 38.2 ( 2.5) training sessions (Figure 4).  This 

more rapid rate of acquisition is consistent with that required for other inhalants  (Shelton, 2007, 

2009) as well as drugs with multiple component cues (Shannon et al., 2004).  My hypothesis is 
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also supported by the greater discriminability of N2O during the generalization curve in which 

the 60% N2O+40% O2 fully substituted for itself (Figure 3, upper panel) where it hadn’t 

previously (Figure 2, upper panel) as well as the data showing that the mice generally tested on 

the majority of available opportunities after acquisition (Figure 7).  

 

 

N2O concentration effect curve 

N2O produced concentration-dependent full substitution for the 60% training 

concentration with an EC50 of 25% (CL 19% – 32%) (Figure 6, upper panel).  In drug 

discrimination studies, full substitution of a training drug for itself typically occurs at the training 

dose as well as at higher doses (Johansson & Jarbe, 1976, Rees, Coggeshall, & Balster, 1985, 

Stolerman, Naylor, Elmer, & Goldberg, 1999).  Likewise full substitution in the present study 

was engendered by both the 60% training concentration as well as by 80% N2O exposure.  Test 

doses of a training drug which are higher than the training dose often result in suppression of 

operant responding (Harris & Balster, 1968, Heffner, Drawbaugh, & Zigmond, 1974).  However, 

in the present study the maximum test concentration of 80% N2O only slightly and non-

significantly attenuated operant responding (Figure 3 and Figure 6).  In humans the N2O 

minimum alveolar concentration required for anesthesia has been estimated to be 105% (Steffey 

et al., 1974) therefore the limited ability of N2O to produce CNS depressant effects is not 

surprising. 

 

 



www.manaraa.com

112 

 

Onset, offset and duration of discriminative stimulus effects 

The onset of the N2O cue was fairly rapid.  Seven minutes of 60% N2O exposure was 

necessary to engender full substitution for the 10 minute training exposure (Figure 8).  Previous 

choice paradigms in humans indirectly estimated a 5 minute onset of stimulus effect of N2O 

(Walker and Zacny, 2003; Kangas and Walker, 2008; Zacny et al., 2008) and subjective effects 

ratings on the PCAG-ARCI (pentobarbital– chlorpromazine–alcohol group) and LSD-ARCI 

scales were significantly increased 15 minutes after the initiation of N2O inhalation (Dohrn et al., 

1993).  Thus the onset of effects in mice was consistent with human data. 

In contrast, the offset of stimulus effects of N2O was more rapid in mice than estimates 

extrapolated from human subjective effects and choice data.  In humans, drug liking was still 

elevated 40 minutes after one hour of exposure to 30% or 40% N2O (Zancy et al., 1996).  In 

mice, the stimulus effects were near vehicle levels only 5 minutes after the cessation of exposure 

(Figure 9).  The more rapid offset but similar onset of nitrous oxides effects in mice and humans 

was unexpected.  One potential factor in the human/mouse discrepancy may be exposure 

duration; in the previous human studies, the exposure duration was one hour but here the training 

exposure duration was only 10 minutes.  It is therefore possible that 10 minutes is insufficient 

time to fully saturate the tissue of mice, resulting in a more rapid offset.  However, the possibility 

that extended gas exposure would have lengthened offset of effects of nitrous oxide is unlikely 

based on my data (Table 3) which showed that doubling the exposure duration of 30% N2O from 

10 to 20 minutes failed to increase the degree of substitution it engendered.  Instead, factors like 

the increased rate of respiration in mice and smaller total body volume are more likely 

responsible for the species difference in the offset of nitrous oxide’s effects.  These data further 

support my hypothesis that the fast offset kinetics of nitrous oxide’s stimulus properties in mice 
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probably heavily influenced the extended acquisition period observed when mice performed 

discrimination training under room air.   
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Aim 2 

The goal of my second aim was to examine the receptor systems underlying the stimulus 

effects of N2O.  Based on existing in vitro and in vivo data, I hypothesized that the stimulus 

effects of N2O are based on multiple mechanisms.  The nature of its subjective effects and strong 

in vitro, ex vivo and in vivo evidence of interactions at NMDA receptors implicated NMDA 

antagonism as the primary mediator of nitrous oxide’s discriminative stimulus effects. In vitro, 

ex vivo and in vivo evidence also suggested an interaction of N2O with GABAA receptors. 

Therefore, I hypothesized that GABAA receptor positive allosteric modulation may also play a 

role in the abuse related subjective effects of nitrous oxide.  If these hypotheses were accurate I 

predicted that both NMDA antagonists as well as GABAA positive allosteric modulators would 

mimic nitrous oxides discriminative stimulus effects at least to some degree. 

 

NMDA antagonism 

Nitrous oxide attenuated agonist mediated NMDA receptor current in amygdalar slices 

(Ranft et al., 2007), substantia nigra cells (Balon et al., 2003), hippocampal preparations 

(Jevtović-Todovorić et al., 1998, Mennerick et al., 1998) as well as in heterologous expression 

systems (Ogata et al., 2006, Petrenko et al., 2010, Sato et al., 2005).  Due to the strong evidence 

of interactions at NMDA receptors I hypothesized that NMDA antagonism was the primary 

mediator of nitrous oxides discriminative stimulus effects.  There are several sites which N2O 

may bind to the NMDA receptor to exert its discriminative stimulus effects: the glutamate 

binding/competitive site, glycine-binding site, channel blockade and polyamine sites.   

I conducted cross-substitution tests with a representative NMDA receptor competitive 

antagonist (CGS-19755), a glycine site antagonist (L-701,324) as well as with three 
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uncompetitive channel blockers (memantine, ketamine and (+)-MK-801 or dizocilpine).  Drugs 

which antagonize the NMDA receptor via polyamine site-binding such as spermine, spermidine, 

arcaine (Nicholson & Balster, 1998), eliprodil (Balster, Nicholson, & Sanger, 1994) and 

ifenprodil hemitartrate (Sanger & Zivkovic, 1989) were not tested as I was interested in the 

abuse-related effect of nitrous oxide and this class of drugs appears to have little abuse liability. 

In the present study, CGS 19755 (Figure 11, closed circle) produced a maximum of 11% 

(5) nitrous oxide-lever responding at a dose of 17.0 mg/kg.   CGS 19755 is a well-established 

and selective competitive NMDA antagonist which cross-substitutes with other competitive 

antagonists such as AP5, AP7 and NPC 12626 (Baron & Woods, 1995, Willetts et al., 1993).  It 

is unlikely that the inability of CGS 19755 to produce nitrous oxide-like effects was due to 

insufficient test doses.  CGS-19755 produced full substitution for isoflurane at 17 mg/kg CGS-

19755 accompanied by reductions in operant response rates (Shelton & Nicholson, 2010).  In the 

present study doses up to 30 mg/kg which also significantly attenuated operant responding were 

examined (Figure 11).  Therefore, the poor substitution of a glutamate site antagonist for 60% 

N2O is consistent with the conclusion that the discriminative stimulus properties of N2O are not 

mediated by competitive antagonism of the NMDA receptor. 

I probed glycine site NMDA receptor antagonism as a mechanism for the discriminative 

stimulus effects N2O by conducting a cross-substitution test with L-701,324. L-701,324 

produced no greater than 1% nitrous oxide-lever responding up to the maximum dose tested of 

30 mg/kg.  Across the dose range used in the present study L-701,324 did not produce 

attenuation of response rates.  Higher doses of 45 mg/kg (Shelton & Nicholson, 2013) and 50 

mg/kg (Shelton & Nicholson, 2012) L-701,324 also failed to suppress of operant response rates 

in mice previously.  These data suggest that the behavioral effects of L-701,324 may require 
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even higher doses or that it simply does not possess behavioral activity at all.  However,  L-

701,324 has anticonvulsant activity (Wlaz & Poleszak, 2011) and will reduce forced-swim 

immobility time in mice (Poleszak et al., 2011) at doses as low as 2 mg/kg and 4 mg/kg, 

respectively, showing that it does have behavioral effects in some assays.  Further, maximum 

substitution levels were produced by L-701,324 doses of 10 mg/kg in NPC 17742 trained rats 

and 3 mg/kg in PCP trained rats (Nicholson & Balster, 2009).  These data support the tentative 

hypothesis that the discriminative stimulus effects of N2O are not mediated by NMDA glycine 

site antagonism.  However, it may be that L-701,324 is a poor probe drug for glycine site NMDA 

receptor antagonism (Nicholson & Balster, 2009, Witkin, Steele, & Sharpe, 1997) and different 

results would have been produced by a more potent and selective agent. 

I examined NMDA receptor channel blockade as a mechanism underlying the 

discriminative stimulus effects N2O by conducting cross-substitution test with the open channel  

blockers memantine, ketamine and (+)-MK-801.  Three channel blockers with a range of 

affinities were tested because it was previously shown that drugs with the low affinity for the 

channel did not substitute in subjects trained to substitute 2.0 mg/kg PCP from saline, which has 

a high affinity for the channel (Nicholson & Balster, 2003).  The NMDA receptor channel 

blockers produced greater N2O appropriate responding than either the competitive or glycine-site 

NMDA antagonists.  The low affinity NMDA receptor channel blocker memantine (Figure 10, 

closed triangle) produced dose-dependent partial substitution for 60% N2O up to a maximum of 

50% (10) drug-lever responding. The moderate affinity NMDA receptor channel blocker 

ketamine (Figure 10, closed square) produced dose-dependent partial substitution for N2O up to a 

maximum of 36% (9) N2O lever responding.  The high affinity NMDA receptor channel 

blocker (+)-MK-801 (Figure 10, closed circle) produced a maximum of 55% (16) N2O-lever 
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responding at the highest test dose of 0.75 mg/kg.  In summary, the data suggested that NMDA 

receptor channel blockade might play some role in the stimulus effects of N2O but there was 

little difference in the degree to which any individual open channel blocker could mimic the 

discriminative stimulus effects of N2O.  These data suggest that relative affinity of NMDA 

receptor channel blockers is not critical for modulating their relative similarity to N2O.  

The near 50% responding of the NMDA channel blockers is consistent with two 

additional alternative explanations.  The first is that NMDA receptor channel blockers simply 

disrupted discrimination performance, producing roughly chance levels of substitution.  NMDA 

antagonists disrupt glutamatergic neurotransmission in long term potentiation (Manahan-

Vaughan et al., 2008), which can interrupt memory recall (Florian & Roullet, 2004).  (+)MK-801 

(Sanger & Zivkovic, 1989, Shelton & Balster, 2004) and other channel blockers (Beardsley et 

al., 2002, Bowen et al., 1999, Nicholson & Balster, 2003, 2009) can be easily trained in drug 

discrimination therefore this hypothesis is unlikely.  However, approximately 50% levels of 

generalization are well below that which one can confidently infer mechanism.  

Prior studies have shown that additive or synergistic discriminative stimulus effects may 

detect interactions between receptor systems (Young et al., 2006). Investigations of 

discriminative stimuli as well as other behavioral phenomena (Young et al., 2006) have used 

potentiation of effects at sub-maximal doses by a second compound as evidence of involvement 

in the mechanism of the behavioral effect.  Based on these and similar studies I hypothesized that 

if NMDA receptor channel blockade was involved in the stimulus effects of N2O it should be 

possible to shift the N2O concentration effect curve leftward by (+)-MK-801 pretreatment.  In the 

present study (+)-MK-801 did indeed enhance the discriminative stimulus of nitrous oxide.  

N2O+vehicle (Figure 12, closed circle) produced full substitution for the training concentration 
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with an EC50 of 32% (CL 24.8% – 41.3%).  A low dose of  (+)-MK-801 (Figure 12, closed 

square) produced a slight leftward shift of the N2O concentration effect curve however the EC50 

of 25.7% (CL16.8% – 39.3%) overlapped with the confidence limits of N2O+vehicle.  A 

moderate dose of 0.17 mg/kg (+)-MK-801 (Figure 12, closed triangle) in combination with 

nitrous oxide produced a significant [F(10,60)=6.89, P<0.05] 1.78 fold leftward shift in the N2O 

concentration effect curve. These data further support the hypothesis that the discriminative 

stimulus effects of nitrous oxide are at least partially mediated by NMDA receptor channel 

blockade.   

Attenuation of the stimulus properties on N2O by co-administration of a potential 

blocking agent such as an NMDA agonist is an alternative method to validate a role for 

interactions at or downstream of NMDA receptor antagonism in the discriminative stimulus 

effects of N2O.  However, previous literature indicated it might be difficult to antagonize the 

stimulus effects of drugs that have multiple receptor mechanisms (Bienkowski, Stefanski, & 

Kostowski, 1997).  For instance, the administration of the agonist NMDA could not antagonize 

the discriminative stimulus effects of ethanol (Bienkowski, Stefanski, & Kostowski, 1997).  

Further complicating this strategy it has been demonstrated that only competitive NMDA 

antagonists but not channel blockers could attenuate the discriminative stimulus effects of 

NMDA without significant reduction in rates of responding (Willetts & Balster, 1989). 

Nonetheless I attempted to antagonize the NMDA antagonist component of N2O cue with 

the glycine site co-agonist sarcosine.  There is some data to suggest it may be possible to 

attenuate some of the effects of NMDA antagonists by administration of co-agonists acting at the 

glycine recognition site.  Specifically, the glycine site co-agonist sarcosine significantly reduced 

toluene-induced cognitive impairment in the novel object recognition test and motor 
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incoordination in the rotarod test but did not alter response latency or threshold in toluene ICSS 

(Chan et al., 2012).  In the present study sarcosine did not substitute for N2O nor did it alter 

response rates (Figure 16).  More importantly, pretreatment with the same 300 mg/kg dose of 

sarcosine which attenuated toluene-induced behavioral deficits (Chan et al., 2012) failed to 

significantly shift the nitrous oxide concentration effect curve (Figure 17, closed squares) nor did 

it alter response rates.  Pretreatment with and even higher 600 mg/kg sarcosine dose also failed 

to alter the nitrous oxide concentration-effect curve producing an almost identical EC50.  

However, pretreatment with 600 mg/kg sarcosine actually enhanced, rather than reduced the rate 

suppressing effects of N2O.  Unfortunately, these experiments with sarcosine neither provide 

additional evidence in support of nor refute my hypothesis that the discriminative stimulus 

effects of nitrous oxide are mediated by NMDA receptor antagonism.  To provide any useful 

information it might have been productive to determine if the nitrous oxide-like stimulus effects 

of (+)-MK-801 could be attenuated by sarcosine, but these studies were unfortunately not 

conducted. 

Overall, uncompetitive NMDA antagonists had a greater ability than competitive and 

glycine site NMDA antagonists to mimic the discriminative stimulus effects of N2O.  However, 

cross-substitution has been reported between channel blockers and competitive antagonists 

(Baron & Woods, 1995, Nicholson & Balster, 2002, Wiley & Balster, 1994) which leaves open 

the possibility that a probe drug with another site of action on NMDA receptors may produce 

appreciable substitution results.  This hypothesis is somewhat less likely given the completely 

negative results produced by the other classes of NMDA antagonists in N2O-trained mice.  The 

conclusion that N2O acts through mechanisms similar to channel blockade is further strengthened 

by data from another study demonstrating that the competitive antagonist NPC 17742 did not 
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elicit substitution in rats trained to discriminate 2.0 mg/kg of the uncompetitive NMDA 

antagonist PCP from vehicle (Nicholson & Balster, 2009) as well as data showing that glycine 

site NMDA antagonists with very few exceptions (Baron & Woods, 1995) at best partially 

substitute for PCP (Balster et al., 1995, Beardsley, Ratti, Balster, Willetts, & Trist, 2002, 

Nicholson & Balster, 2009).  

 

GABAA receptor positive allosteric modulation 

Nitrous oxide potentiates agonist mediated GABAA current in hippocampal preparations 

(Dzoljic & Van Duijn, 1998) and in heterologous expression systems (Hapfelmeier et al., 2001, 

Hapfelmeier et al., 2000, Yamakura & Harris, 2000).  Further, nitrous oxides subjective effects 

are attenuated by administration of a benzodiazepine site antagonist, flumazenil (Zacny et al., 

1995).  These data suggest that the discriminative stimulus effects of nitrous oxide may also be at 

least partially mediated by GABAA receptor positive modulatory effects.  To address this 

possibility I tested the ability of five different site-selective GABA-positive drugs for their 

ability to substitute for nitrous oxide.  These drugs included the direct GABAA agonist 

muscimol, the extrasynaptic GABAA agonist gaboxadol (THIP), the GABA transaminase 

inhibitor valproic acid as well as positive allosteric modulators midazolam and pentobarbital. 

The direct GABAA agonist muscimol failed to significantly substitute for 60% N2O 

(Figure 13, closed squares).  Gaboxadol a direct partial agonist at extrasynaptic α4β3δ and 

α6β1γ2 GABAA receptors also failed to produce significant substitution for 60% N2O (Figure 13, 

closed circles).  These data suggest that subjective effects of nitrous oxide are not mediated by 

direct GABAA agonist effects at either synaptic or extrasynaptic GABAA receptors and are 
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consistent with studies showing N2O does not potentiate GABAA current without the presence of 

agonist (Hapfelmeier et al., 2000).  

Of the potential GABAergic mechanisms, the possibility that nitrous oxide acts as a 

positive allosteric modulator at GABAA was the most strongly implicated in the literature.  A 

concentration of 29.2 mM nitrous oxide did not activate α1β2γ2L recombinant GABAA receptors 

without the presence of agonist GABA but did enhance activation in the presence of GABA 

(Hapfelmeier et al., 2000).  Furthermore, the benzodiazepine chlordiazepoxide produced 

behavioral cross-tolerance with 75% nitrous oxide in an anxiolytic-sensitive staircase task 

(Quock et al., 1992).  Positive GABAA allosteric modulatory sites have been identified for the 

binding of benzodiazepines, barbiturates and GABA positive neurosteroids. In the present study 

neither the benzodiazepine-site positive allosteric modulator midazolam nor the barbiturate 

pentobarbital produced meaningful levels of cross-substitution with 60% N2O.  Midazolam did 

however (Figure 14, closed circle) produce a low but statistically significant level of partial 

substitution for 60% N2O.  This data is likely an anomaly attributable to the extremely low 

variability across subjects but to completely rule out the possibility of a GABA positive 

component in the discriminative stimulus effects of nitrous oxide I conducted a curve-shift 

experiment to determine if midazolam would enhance the discriminative stimulus of 60% N2O.  

N2O+vehicle (Figure 15, closed circles) produced concentration-dependent full substitution for 

the 60% N2O training concentration with an EC50 of 25 % (CL 14% – 44%).  Pretreatment with 

0.3 as well as 3 mg/kg midazolam failed to potentiate the N2O concentration effect curve.  

Pretreatment with 10.0 mg/kg midazolam also failed to potentiate the N2O concentration-effect 

curve but it did increase the potency of N2O for suppressing responding. 
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Lastly, it was remotely possible that N2O might function in some manner to increase 

extracellular GABA levels through interference with GABA reuptake or degradation 

mechanisms.  One of the major actions of valproic acid is to increase GABA levels by blocking 

GABA transaminase.  In the present study valproic acid (Figure 13, closed triangles) did not 

significantly substitute for N2O.  Therefore it is very unlikely nitrous oxides subjective effects 

are mediated by this mechanism either. 

In summary these negative findings with GABAergic probe compounds were surprising 

especially considering the in vitro literature as well as human data showing that flumazenil 

attenuates  the subjective “high” produced by 30% N2O (Zacny et al., 1995).  One explanation 

could be GABAergic involvement in nitrous oxides cue is only prevalent or even detectable at 

certain training doses.  This would somewhat parallel the findings from studies in which ethanol 

has been trained as a discriminative stimulus.  In these experiments it was found that the 

GABAergic component of ethanol’s discriminative stimulus was present at low ethanol training 

doses but higher training doses were required to reveal the NMDA antagonist-like stimulus 

effects of ethanol (Grant & Colombo, 1993, Shelton & Grant, 2002, Vivian, Waters, Szeliga, 

Jordan, & Grant, 2002).  In N2O trained mice it may be that the exact opposite is the case in that 

the 60% N2O training concentrations only produce NMDA antagonist-like stimulus effects 

whereas a higher training concentration might reveal a GABAergic component. This seems 

somewhat unlikely given that it appears that the stimulus effects of N2O are produced at similar 

concentrations in humans and mice and the 30% N2O concentration which was attenuated by 

flumazenil in humans was lower, not higher than that trained in the present study.  It is also 

possible that there is a GABAergic component present in the stimulus effects of N2O but the 

relatively high 60% training concentration resulted in such a strong NMDA antagonist 
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component that the GABAergic component was overshadowed.  Lastly, it is also possible that 

GABAergic mechanisms are not involved in the stimulus effects of N2O but may be implicated 

in other behavioral effects such as  anxiolysis (Czech & Quock, 1993, Czech & Green, 1992, Li 

& Quock, 2001).  Regardless in sum the present data strongly suggest that GABAergic positive 

modulation is not an important mechanism in transducing the subjective effects of N2O under the 

present training conditions.   
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Aim 3 

 The purpose of Aim 3 was to determine, as has been speculated, if nitrous oxide 

represents a unique entity within the broader abused inhalant drug class (Balster, 1998).  To 

explore this question the stimulus effects of N2O were compared to other representative abused 

inhalants from a variety of chemical classes.   

 

Comparison of the stimulus effects of N2O to volatile halogenated anesthetics 

Isoflurane is an inhalational anesthetic described as sedating at sub-anesthetic 

concentrations in human volunteers (Zacny et al., 1994) while N2O is described as producing a 

more pronounced “high” accompanied with a “dreamy, detached reverie” state (Zacny et al., 

1994; Beckman et al., 2006).  In the present study isoflurane (Figure 18, closed circle) produced 

a maximum of 39% (11) N2O-lever selection.  The limited degree of overlap between N2O and 

isoflurane is consistent with previous results from our laboratory in which N2O produced a 

maximum of 31% (18) isoflurane appropriate responding (Shelton & Nicholson, 2010).  In this 

regard isoflurane and N2O substitute symmetrically, albeit partially, for one another.  Unlike 

isoflurane, methoxyflurane has pronounced analgesic effects in humans (Tomi et al., 1993; 

Abdullah et al., 2011; Caldicott, 2011); methoxyflurane may have been more N2O-like given that 

it too produces analgesic effects.  Methoxyflurane (Figure 18, closed square) produced a 

maximum of 47% (14) N2O-lever selection.  While somewhat greater than the substitution 

produced by isoflurane, the mean difference in substitution between the two volatile inhalants are 

probably not sufficient to make any conclusions given the normal variability in drug 

discrimination data.  Additional studies with much larger subject sizes would be required to 

determine if this difference is meaningful. 
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The discriminative stimulus properties of isoflurane are mimicked by both GABAA 

positive modulators and NMDA antagonists.  Specifically, benzodiazepine, barbiturates and 

valproic acid produced robust, dose-dependent substitution for 6,000 ppm isoflurane.  The 

competitive NMDA antagonist CGS 19755 was also isoflurane-like while an open channel 

blocker produced partial substitution in isoflurane trained subjects.  Based on the poor 

substitution of GABAergic compounds for 60% N2O, the degree to which isoflurane was able to 

produce overlapping discriminative stimulus effects with N2O is probably due to the 

contributions of NMDA antagonism to its discriminative stimulus.  The limitations of 

isoflurane’s ability to produce a greater degree of N2O appropriate responding despite having a 

common NMDA antagonist component could be speculated to be attributable to overshadowing 

of that component by the GABAergic effects of isoflurane.  Additional experiments will be 

required to more fully explore this possibility. 

 

Comparison of the stimulus effects of N2O and abused volatile inhalants. 

Toluene is perhaps the prototypic abused inhalant and has been speculated to be in a 

subclass of volatile inhalants which are distinct from N2O.  Like  N2O, toluene has numerous 

molecular targets including NMDA, GABAA, glycine, 5HT3, neuronal nicotinic acetylcholine, 

dopaminergic and muscarinic receptors as well as sodium, calcium and potassium channels [for 

review see (Bowen et al., 2006)].  In the present study toluene (Figure 19, closed square) 

produced a concentration-dependent and significant level of partial substitution for N2O up to a 

maximum of 72% (10) N2O-lever responding.  In individual subjects, the degree of similarity 

between toluene and N2O was even more apparent in that toluene produced full substitution for 

N2O in seven of eight subjects at one or more test concentrations.  Of all the inhalants tested, 
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toluene produced the most robust N2O-like stimulus effects.  The high degree of substitution of 

toluene for 60% N2O would suggest the neurochemical substrates underlying their stimulus 

properties are very similar.  Several studies have characterized toluene’s discriminative 

stimulus (Knisely et al., 1990, Rees et al., 1987, Shelton, 2007, Shelton & Nicholson, 2013, 

Shelton & Slavova-Hernandez, 2009).  Toluene has overlapping discriminative stimulus effects 

with pentobarbital and ethanol (Rees et al., 1987).  Further, benzodiazepines produce robust 

substitution in toluene-trained subjects (Knisely, Rees, & Balster, 1990, Shelton & Nicholson, 

2013).  In contrast, NMDA antagonism does not appear to be a strong component of toluene’s 

discriminative stimulus effect (Shelton & Nicholson, 2013).  These data have been interpreted 

as evidence that the stimulus effects of toluene are primarily GABAA receptor mediated.  It is 

difficult to reconcile the toluene cross-substitution data with my prior results demonstrating that 

N2O has NMDA antagonist-like but little to no GABAA positive modulator-like stimulus 

effects.  It could be that these data are simply an aberration.  That seems unlikely given that 

TCE also produced some degree of cross-substitution in the present study.  Like toluene, the 

stimulus effect of TCE have been shown to overlap with GABAA positive modulators but not 

NMDA antagonists (Shelton, 2010, Shelton & Nicholson, 2012).  Given the large number of 

potential targets the most parsimonious explanation is that some other as yet unidentified 

stimulus commonality may exist between volatile inhalants and N2O and that component may 

be responsible for the robust cross-substitution data. This is, however, purely speculation as no 

data has yet been generated to support this hypothesis. 

 Lastly, it is worth noting that an alternative interpretation of the ability of all of the 

volatile compounds to produce some degree of N2O-like stimulus effects may be due to their 

strong odors.  To determine if a strong odor alone was sufficient to elicit N2O-like stimulus 



www.manaraa.com

127 

 

effects, a sweet smelling odorant devoid of CNS properties was examined for cross-substitution 

(Figure 20).  2-butanol produced no greater than 3% N2O lever responding at any concentration 

tested.  This data is consistent with prior studies from the laboratory showing that odor does not 

produce inhalant-like discriminative stimulus effects in TCE or toluene trained mice (Shelton, 

2007, 2009) and therefore support the conclusion that the stimulus effects of abused inhalants are 

CNS mediated. 
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Aim 4 

The goal of Aim 4 was to explore some of the less likely molecular mechanisms which 

might have been involved in transducing the discriminative stimulus properties of nitrous oxide.  

These molecular mechanisms were considered less likely due to either a limited number of 

studies in the literature suggesting their involvement or the presence of overtly conflicting 

reports.  For several of the drugs chosen positive substitution results of drugs tested in Aims 2 

and 3 influenced the choice of drugs tested in Aim 4. 

 

Dopamine involvement in the stimulus effects of nitrous oxide 

One study has shown that toluene elicits partial substitution in D-amphetamine-trained 

mice (Bowen, 2006).  Given the overlap between the discriminative stimuli of toluene and N2O I 

speculated that the stimulus effects of N2O might also have a dopaminergic component.  In the 

present study, D-amphetamine produced only vehicle-appropriate responding (Figure 25) across 

a dose range which, while not able to suppress operant behavior, has been shown to be active in 

other behavioral procedures such as drug discrimination (Porter et al., 2008) and locomotor 

activity (Marquez, Hamid, & Lutfy, 2013).  This data suggests that facilitation of dopaminergic 

neurotransmission is probably not involved in the discriminative stimulus effects of N2O despite 

data showing that dopamine may be involved in the antinociceptive effects N2O (Koyanagi, 

Himukashi, Mukaida, Shichino, & Fukuda, 2008). 
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Effects of ethanol and serotonin agonists  

Ethanol has been found to have many common behavioral properties with inhalants 

including stimulus effects (Rees, Knisely, Breen, & Balster, 1987), low dose locomotor 

activation and high dose respiratory depression (Bowen & Balster, 1998) and anxiolytic 

properties (Lapin, 1993).  A drinking history also increases N2O choice in humans and a N2O 

exposure history reduces ethanol drinking in rats (Kosobud, Kebabian, & Rebec, 2006, Zacny, 

Walker, & Derus, 2008).  The stimulus effects of ethanol have been shown to be mediated by 

primarily by NMDA antagonism (Kotlinska & Liljequist, 1997, Shelton & Balster, 1994) and 

GABAA receptor positive modulation (Grant, Waters, Green-Jordan, Azarov, & Szeliga, 2000, 

Helms, Rogers, & Grant, 2009, Shelton & Balster, 1994). I had originally postulated that N2O, 

like ethanol, was a compound cue primarily composed of a NMDA antagonist and a GABAA 

positive allosteric modulator component.  Therefore, I speculated that ethanol would robustly 

substitute for 60% N2O.  Rather than elicit full substitution, ethanol produced a maximum of 

45% (12) N2O-lever selection at a dose of 2.5 g/kg, the highest dose tested.  This partial level of 

substitution suggested some overlap in stimulus effects of ethanol and N2O but, as was the case 

with MK-801, the data were equivocal.  To increase my confidence that the data were not simply 

an anomaly I conducted a curve shift experiment to determine if ethanol would enhance the 

discriminative stimulus of N2O. Pretreatment with a low dose of 0.5 g/kg ethanol failed to 

significantly increase the stimulus potency of N2O.  However, a moderate pretreatment dose of 

1.5 g/kg ethanol significantly enhanced the discriminative stimulus effects of N2O [F(8,56)=4.43, 

P<0.05] producing a 2.84 fold leftward shift in the N2O concentration-effect curve.   

These data supported my hypothesis that N2O and ethanol have a least one common 

stimulus component.  The failure of ethanol to fully substitute for N2O is probably not surprising 
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given that GABAergic drugs had little to no overlap with the stimulus properties of N2O (Figures 

13-15).  It is most likely that only interactions at NMDA receptors are responsible for the shared 

stimulus properties between ethanol and N2O.  Comparing Figure 10 and Figure 21 reveal almost 

identical N2O lever responding; ethanol alone produced 45% (12) and MK-801 alone produced 

50% (10). However, comparing Figure 12 and Figure 22 suggest that ethanol may produce a 

slightly more robust leftward shift in the N2O concentration effect curve than (+)-MK-801.  

Specifically, the most efficacious dose of 0.17 mg/kg (+)-MK-801 (Figure 12, closed triangle) 

produced a 1.78 fold leftward shift in the N2O concentration effect curve and an EC50 value of 

17% (CL 13% – 23%).  In contrast pretreatment with 1.5 g/kg ethanol (Figure 22, closed 

triangle) produced a more pronounced 2.84 fold leftward shift in N2O concentration effect curve 

and an EC50 11% (CL 7% – 18%).  It is therefore possible that there is another common 

mechanism underlying the stimulus effects of both compounds.   

The most likely additional common receptor mediator of the stimulus effects of both N2O 

and ethanol are serotonin receptors.  The discriminative stimulus effects of ethanol also have an 

additional serotonergic component which is manifested most strongly at low training doses 

(Grant, Colombo, & Gatto, 1997).  The 5HT1B/2C agonist mCPP substitutes for ethanol (Grant, 

Colombo, & Gatto, 1997).  In the present study mCPP failed to substitute for N2O.  mCPP 

produced a maximum of 21% (17) N2O lever responding at  the highest dose of 10 mg/kg, 

which also fully suppressed operant responding in three of eight subjects.  This would suggest 

that the discriminative stimulus of N2O does not have a 5HT1B/2C agonist-like component.  

However, the most robust substitution of mCPP for ethanol occurred at a low, rather than high 

training doses (Grant, Colombo, & Gatto, 1997).  Another serotonergic agonist 8-OH DPAT 

which is more selective for 5HT1A receptors produced less robust substitution for ethanol overall 
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but showed stronger ethanol-like stimulus effects at a high training dose.  In the present study 8-

OH DPAT (Figure 24) failed to significantly substitute for N2O [F(7,28)=7.98, P=0.20] producing 

no greater than 4% N2O-lever selection at any dose.  These data suggest that the discriminative 

stimulus effects of N2O are not mediated by 5HT1B/2C or 5HT1A receptors.  However, only a 

single training concentration of N2O was used in the present study.  The 60% N2O training 

concentration was probably relatively high given it had robust stimulus effects and relatively 

short training duration.  It is therefore possible that N2O does have some serotonergic component 

which might be revealed with a lower training concentration.  Additional studies would be 

necessary to address this hypothesis.   

In summary, the discriminative stimulus effects of ethanol and N2O have a limited degree 

of similarity. Of the three major mediators of ethanol’s discriminative stimulus, only NMDA 

antagonists produced N2O-like stimulus effects.  Further the most robust level of substitution 

produced by any NMDA antagonist was nearly identical to that produced by ethanol.  These data 

support the conclusion that the overlap in stimulus effects are due to the uncompetitive NMDA 

antagonist-like stimulus effects of both compounds. 

 

 

Mu, kappa and delta opioid agonist effects 

The analgesic and antinociceptive effects of N2O have been hypothesized to be mediated 

by interactions with mu opioid receptors (Emmanouil et al., 2008).  In the present study 

morphine (Figure 26, closed circles) produced a maximum of 33% (33) N2O lever responding 

at a dose which fully suppressed operant responding in five of eight subjects.  The inability of 

morphine to produce appreciable substitution in these subjects is consistent with lack of 
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antagonism of 30% N2O’s subjective effects by opioid antagonist naloxone (Zacny et al., 1999, 

Zacny, Coalson, Lichtor, Yajnik, & Thapar, 1994) as well as data showing that N2O does not 

produce morphine-like discriminative stimulus effects in guinea pigs (Hynes & Hymson, 1984).  

These data suggest that mu opioid receptors may mediate the analgesic and antinociceptive 

effects of N2O but are probably not involved in transducing the discriminative stimulus effects of 

N2O. Like morphine, the delta opioid agonist SNC-80 (Figure 26, closed triangles) also failed to 

produce greater than 10% N2O lever responding. The failure of the delta opioid agonist to 

substitute in these subjects is consistent with reports that the delta opioid receptor agonist 

naltrindole does not attenuate N2O analgesia (Koyama & Fukuda, 2010).   

Unlike the negative substitution results in morphine-trained guinea pigs, N2O substituted 

in guinea pigs trained to discriminate the purported kappa opioid agonist ethylketocyclazocine 

from vehicle (Hynes & Hymson, 1984).  In the present study the selective kappa opioid agonist 

U50-488H  (Figure 26, closed squares) did not substitute for 60% N2O, producing a maximum of 

only 11% (11) N2O-lever responding.  The failure of U50-488H to elicit significant substitution 

in the present study was surprising given the prior ethylketocyclazocine data (Hynes & Hymson, 

1984).  However, recent data suggests that ethylketocyclazocine is a mixed mu/kappa opioid 

agonist and some of the discriminative stimulus effects of ethylketocyclazocine may result from 

mu opioid receptor actions (Wessinger, Li, & McMillan, 2011).  This discrepancy does not 

explain why N2O has ethylketocyclazocine but not morphine-like stimulus effects in guinea pigs 

but, unlike ethylketocyclazocine, U50-488H is a more selective kappa opioid agonist.  It may 

have been the case that a mixed mu/kappa opioid agonist would have produced more robust 

substitution for N2O than either compound alone but that possibility was not examined.  

Alternatively it may be that the differences between studies were species dependent although this 
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seems unlikely given mice and guinea pigs both express all three opioid receptor subtypes.  

Overall, the low levels of N2O appropriate responding engendered by cross substitution tests of 

opioid agonists would imply that opioid agonism does not play a role in N2O cue. 

 

Nicotinic involvement in the stimulus effects of nitrous oxide. 

Human homomeric α7 neuronal nicotinic acetylcholine (nACh) receptors in Xenopus 

oocytes are modestly inhibited by N2O (Suzuki et al., 2003).  Similar results have also been 

found using heteromeric nACh receptors preparations (Yamakura & Harris, 2000).  In the 

present study, nicotine (Figure 27) produced no greater than 1% N2O-lever responding up to 

doses which significantly suppressed operant response rates.  This was not surprising given the 

in vitro data would suggest that N2O functions to negatively modulate nicotinic receptors.  In a 

subsequent curve-shift experiment, a 1 mg/kg dose of nicotine also failed to produce any 

attenuation of the N2O concentration-effect curve (Figure 28).  The inability of nicotine to 

substitute for or antagonize the stimulus effects of N2O is consistent with data showing that it 

does not alter the discriminative stimulus effects of TCE (Shelton, 2010).  Taken together the 

data support the conclusion that an interactions with nACh receptors does not mediate the 

discriminative stimulus effects of N2O. 

 

Role of nitric oxide in the stimulus effects of nitrous oxide.   

Several reports have linked the analgesia effects of N2O with nitric oxide production.  In 

particular, neuronal nitric oxide synthase (nNOS) inhibitors can attenuate N2O analgesia [review 

see (Emmanouil & Quock, 2007)].  Figure 29 shows that the nNOS inhibitor L-NAME does not 

substitute for N2O nor does it alter operant response rates.  This result was unsurprising and I 
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was primarily interested in determining if L-NAME would antagonize the discriminative 

stimulus of 60% N2O (Figure 30). N2O+vehicle produced concentration-dependent full 

substitution with an EC50 of 31% (CL 25% – 37%).  N2O+30 mg/kg L-NAME (closed squares) 

produced concentration-dependent full substitution with an almost identical EC50 of 35% (CL 

32% - 39%). Interestingly, no dose of N2O alone attenuated operant responding by more than 

25% of the O2 control response rate.  However, pretreatment with 30 mg/kg L-NAME prior to 

N2O exposure produced a significant [F(6, 42)=7.34, P<0.05] and concentration-dependent 

attenuation of operant responding sufficient to generate an EC50 of 73% (CL 61% - 86%).  

Therefore I would conclude that while N2O analgesia in rodents is antagonized by nNOS 

inhibition, nitric oxide is not involved in the discriminative stimulus effects of N2O.  However, 

based on the response rate data there may be some other interaction between nitric oxide and 

nitrous oxide that is synergistic rather than antagonistic in nature.  

 

 

Summary 

 The present series of experiments showed that under the proper training conditions N2O 

can serve as a discriminative stimulus in mice.  Like other drugs the stimulus effects of N2O are 

exposure concentration-dependent and orderly.  The extensive series of cross substitution 

experiments demonstrated that the stimulus effects of N2O are probably not mediated by 

GABAA, opioid, 5-HT or nicotinic acetylcholine receptors.  The only receptor system of those 

tested which appears to be involved in transducing the discriminative stimulus effects of N2O is 

the NMDA receptor.  The data in this regard suggest that N2O may function as a NMDA receptor 

channel blocker.    
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 The less than complete substitution engendered by the uncompetitive NMDA antagonists 

suggest that N2O may have a compound cue composed of multiple components.  Of the two 

types of compound cues defined by the cross-substitution of individual cue components N2O 

appears to mirror a conditional compound cue rather than a redundant compound cue (Stolerman, 

Rauch, and Norris, 1987).  In a conditional compound cue a singular component would not be 

expected to fully substitute for the training condition.  Only a singular drug or drug mixture 

which presents both components jointly would produce full substitution for the training 

condition.  If indeed N2O is a conditional compound cue it differs in this regard from the 

stimulus of ethanol which has consistently been shown to produce a redundant compound cue 

when trained in a drug versus vehicle discrimination (Helms, Rogers, & Grant, 2009).  Another 

possibility is that the cue complex of N2O like ethanol is redundant but that the failure of NMDA 

antagonists to elicit full substitution is due to stimulus overshadowing by another, as yet 

unidentified, major mediator of its stimulus effects.  This is certainly plausible given the fact that 

no drug tested fully substituted for N2O. 

It has been speculated that N2O represents a unique subclass of abused inhalants.  The 

present data at least partially refute this conclusion.   Of all the compounds tested toluene 

produced the most robust N2O-like effects, eliciting full substitution at one or more test 

concentrations in seven of eight subjects tested.  The overlap between N2O and toluene is very 

interesting but difficult to reconcile with current published data especially the data showing that 

of the mechanisms tested which included NMDA antagonism, only GABAA positive modulators 

produced toluene-like discriminative stimulus effects (Shelton & Nicholson, 2013). However 

toluene like N2O has a number of molecular targets which have yet to be explored and it is 

certainly possible that one of these mechanisms will provide the necessary common link between 
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these two abused inhalants.  For instance future studies might include substitution tests of 5HT3 

antagonists, glycine agonists or TREK-1 potassium channel activators.  5HT3 antagonists reduce 

anxiety-like behaviors (Costall, Kelly, Naylor, Onaivi, & Tyers, 1989) and N2O inhibits 5HT3 

receptor current (Takahiro Suzuki et al., 2002, Yamakura & Harris, 2000). To my knowledge 

5HT3 antagonists have not even been investigated for their effects on N2O mediated anxiolysis 

however it is possible there is some overlap with the discriminative stimulus effects of N2O. 

Second, N2O potentiates glycine receptors (Yamakura & Harris, 2000).  Since ethanol has also 

been shown to potentiate glycine receptors [for review see (Perkins, Trudell, Crawford, Alkana, 

& Davies, 2010)] perhaps β-alanine, L-alanine or taurine may have positive cross-substitution 

results in N2O trained subjects.  Finally, TREK-1 or K2P2.1 channels are leak channels activated 

by N2O (Gruss et al., 2004).  BL 1249 is a specific ligand with biological activity tested in vivo 

(Tertyshnikova et al., 2005) but has not been tested in drug discrimination.  Although N2O has 

interactions with these receptors it is not known if TREK-1 channel activation has discriminable 

effects.  In sum the information derived from these studies may lead to the discovery of the 

secondary mechanism/mechanisms responsible for this discriminative stimulus effects of N2O. 
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Appendix 1.  Image of the apparatus.  Each 26.0-L acrylic exposure chamber encased one 

modified two-lever mouse operant conditioning chamber and one 80mm 24-Volt DC fan. 
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Appendix 2:  Schematic of the flow of gas through the 26.0-L exposure chamber.
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Appendix 3.  Application of rise of chamber concentration (top) and t99 (bottom) calculations for 

optimization of the training concentration in the dual purpose exposure chamber. 

 

 

C = CO [1 - exp (t (-Q/V)]  

CO = steady state concentration = 0.60 

V = volume of chamber = 25.96 L 

Q = flow rate = 5.81 L/min 

 t = time = x 

 

C = CO [1 - e (t )(-Q/V)] 

C = 0.6 [1- e (time)( - 5.81 LPM / 25.96L))] 

If x =10  C = 0.6 [1- e (10)( -0.22/min)] = 0.60 

If x =15 C = 0.6 [1- e (15)( -0.22/min)] = 0.65 

 

t99 =4.6 V/Q   

V = volume of chamber = 25.96 L 

Q = flow rate = 5.81 L/min 

 

t99 =4.6 V/Q = 4.6 (25.96 L / 5.81 LPM) = 20.56 min  
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Appendix 4.  Oximeter readings during a mock exposure to 60% N2O 
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Appendix 5.  Oximeter readings during a mock exposure to 80% N2O in the 26.0-L chamber 

before optimized calculation. 
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Appendix 6.  Oximeter readings during an optimized mock exposure to 80% N2O in the 26.0-L 

chamber after optimized calculations. 
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